F(±a2)上分布和测地线的平行性±b2)结构拉格朗日流形

IF 0.5 Q3 MATHEMATICS
Mohammad Nazrul Islam Khan, L. Das
{"title":"F(±a2)上分布和测地线的平行性±b2)结构拉格朗日流形","authors":"Mohammad Nazrul Islam Khan, L. Das","doi":"10.22190/FUMI200420013K","DOIUrl":null,"url":null,"abstract":"This paper deals with the Lagrange vertical structure on the vertical space TV (E) endowed with a non null (1,1) tensor field FV satisfying (Fv2-a2)(Fv2+a2)(Fv2 - b2)(Fv2 + b2) = 0. In this paper, the authors have proved that if an almost product structure P on the tangent space of a 2n-dimensional Lagrange manifold E is defined and the F(±a2; ±b2)-structure on the vertical tangent space TV (E) is given, then it is possible to define the similar structure on the horizontal subspace TH(E) and also on T(E). In the next section, we have proved some theorems and have obtained conditions under which the distribution L and M are r-parallel, r¯ anti half parallel when r = r¯ . The last section is devoted to proving theorems on geodesics on the Lagrange manifold","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"20 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PARALLELISM OF DISTRIBUTIONS AND GEODESICS ON F(±a2; ±b2)-STRUCTURE LAGRANGIAN MANIFOLD\",\"authors\":\"Mohammad Nazrul Islam Khan, L. Das\",\"doi\":\"10.22190/FUMI200420013K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the Lagrange vertical structure on the vertical space TV (E) endowed with a non null (1,1) tensor field FV satisfying (Fv2-a2)(Fv2+a2)(Fv2 - b2)(Fv2 + b2) = 0. In this paper, the authors have proved that if an almost product structure P on the tangent space of a 2n-dimensional Lagrange manifold E is defined and the F(±a2; ±b2)-structure on the vertical tangent space TV (E) is given, then it is possible to define the similar structure on the horizontal subspace TH(E) and also on T(E). In the next section, we have proved some theorems and have obtained conditions under which the distribution L and M are r-parallel, r¯ anti half parallel when r = r¯ . The last section is devoted to proving theorems on geodesics on the Lagrange manifold\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/FUMI200420013K\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/FUMI200420013K","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有非零(1,1)张量场FV满足(Fv2-a2)(Fv2+a2)(Fv2 - b2)(Fv2 + b2) = 0的垂直空间TV (E)上的拉格朗日垂直结构。本文证明了如果在2n维拉格朗日流形E的切空间上定义了一个概积结构P,并且F(±a2;给出了垂直切空间TV (E)上的±b2)-结构,则可以在水平子空间TH(E)上定义类似的结构,也可以在T(E)上定义类似的结构。在下一节中,我们证明了一些定理,并得到了分布L和M是r-平行的,当r = r¯时r¯反半平行的条件。最后一节致力于在拉格朗日流形上证明测地线定理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PARALLELISM OF DISTRIBUTIONS AND GEODESICS ON F(±a2; ±b2)-STRUCTURE LAGRANGIAN MANIFOLD
This paper deals with the Lagrange vertical structure on the vertical space TV (E) endowed with a non null (1,1) tensor field FV satisfying (Fv2-a2)(Fv2+a2)(Fv2 - b2)(Fv2 + b2) = 0. In this paper, the authors have proved that if an almost product structure P on the tangent space of a 2n-dimensional Lagrange manifold E is defined and the F(±a2; ±b2)-structure on the vertical tangent space TV (E) is given, then it is possible to define the similar structure on the horizontal subspace TH(E) and also on T(E). In the next section, we have proved some theorems and have obtained conditions under which the distribution L and M are r-parallel, r¯ anti half parallel when r = r¯ . The last section is devoted to proving theorems on geodesics on the Lagrange manifold
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信