Jin Yang, Zhenghao He, Zhuoyu Zhang, Yuchen Liu, Ming Yin
{"title":"腔体参数对水下脉冲放电冲击波传播的影响","authors":"Jin Yang, Zhenghao He, Zhuoyu Zhang, Yuchen Liu, Ming Yin","doi":"10.1051/epjap/2021200325","DOIUrl":null,"url":null,"abstract":"In order to optimize the shock wave generated by underwater pulsed discharge, the relationship between cavity parameters and shock wave propagation is further studied by three-dimensional numerical simulation. According to the sound pressure field distribution obtained by the simulation, the reflection of the shock wave by the reactor wall can be clearly observed. The reflected pressure wave will reach its maximum value and then gradually attenuate. The study also found that when the deposition energy is constant, when the initial radius of the arc channel increases from 0.1 mm to 2.5 mm, the maximum amplitude of the shock wave will increase from 0.22 × 105 Pa to 1.70 × 105 Pa. When the initial radius of the arc channel is constant, as the deposition energy increases, the time to radiate the shock wave becomes earlier, and the maximum amplitude of the shock wave will increase. This means that a higher pressure can be generated by increasing the input of the deposition energy. When the deposition energy is constant, a higher-pressure level can be obtained by increasing the initial radius of the channel. The excitation frequency also affects the shock wave amplitude. Higher excitation frequency can obtain higher pressure amplitude. These methods will increase the efficiency of underwater pulse discharge treatment of bacteria.","PeriodicalId":12228,"journal":{"name":"European Physical Journal-applied Physics","volume":"1 1","pages":"20801"},"PeriodicalIF":0.9000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of cavity parameters on the propagation of shock wave generated by underwater pulsed discharge\",\"authors\":\"Jin Yang, Zhenghao He, Zhuoyu Zhang, Yuchen Liu, Ming Yin\",\"doi\":\"10.1051/epjap/2021200325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to optimize the shock wave generated by underwater pulsed discharge, the relationship between cavity parameters and shock wave propagation is further studied by three-dimensional numerical simulation. According to the sound pressure field distribution obtained by the simulation, the reflection of the shock wave by the reactor wall can be clearly observed. The reflected pressure wave will reach its maximum value and then gradually attenuate. The study also found that when the deposition energy is constant, when the initial radius of the arc channel increases from 0.1 mm to 2.5 mm, the maximum amplitude of the shock wave will increase from 0.22 × 105 Pa to 1.70 × 105 Pa. When the initial radius of the arc channel is constant, as the deposition energy increases, the time to radiate the shock wave becomes earlier, and the maximum amplitude of the shock wave will increase. This means that a higher pressure can be generated by increasing the input of the deposition energy. When the deposition energy is constant, a higher-pressure level can be obtained by increasing the initial radius of the channel. The excitation frequency also affects the shock wave amplitude. Higher excitation frequency can obtain higher pressure amplitude. These methods will increase the efficiency of underwater pulse discharge treatment of bacteria.\",\"PeriodicalId\":12228,\"journal\":{\"name\":\"European Physical Journal-applied Physics\",\"volume\":\"1 1\",\"pages\":\"20801\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Physical Journal-applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/epjap/2021200325\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Physical Journal-applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/epjap/2021200325","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Effect of cavity parameters on the propagation of shock wave generated by underwater pulsed discharge
In order to optimize the shock wave generated by underwater pulsed discharge, the relationship between cavity parameters and shock wave propagation is further studied by three-dimensional numerical simulation. According to the sound pressure field distribution obtained by the simulation, the reflection of the shock wave by the reactor wall can be clearly observed. The reflected pressure wave will reach its maximum value and then gradually attenuate. The study also found that when the deposition energy is constant, when the initial radius of the arc channel increases from 0.1 mm to 2.5 mm, the maximum amplitude of the shock wave will increase from 0.22 × 105 Pa to 1.70 × 105 Pa. When the initial radius of the arc channel is constant, as the deposition energy increases, the time to radiate the shock wave becomes earlier, and the maximum amplitude of the shock wave will increase. This means that a higher pressure can be generated by increasing the input of the deposition energy. When the deposition energy is constant, a higher-pressure level can be obtained by increasing the initial radius of the channel. The excitation frequency also affects the shock wave amplitude. Higher excitation frequency can obtain higher pressure amplitude. These methods will increase the efficiency of underwater pulse discharge treatment of bacteria.
期刊介绍:
EPJ AP an international journal devoted to the promotion of the recent progresses in all fields of applied physics.
The articles published in EPJ AP span the whole spectrum of applied physics research.