涉及斐波那契数的无穷积的代数独立性

Pub Date : 2020-09-14 DOI:10.3792/PJAA.97.006
D. Duverney, Y. Tachiya
{"title":"涉及斐波那契数的无穷积的代数独立性","authors":"D. Duverney, Y. Tachiya","doi":"10.3792/PJAA.97.006","DOIUrl":null,"url":null,"abstract":"Let $\\{F_{n}\\}_{n\\geq0}$ be the sequence of the Fibonacci numbers. The aim of this paper is to give explicit formulae for the infinite products \\[ \\prod_{n=1}^{\\infty}\\left( 1+\\frac{1}{F_{n}}\\right) ,\\qquad\\prod_{n=3}^{\\infty}\\left( 1-\\frac{1}{F_{n}}\\right) \\] in terms of the values of the Jacobi theta functions. From this we deduce the algebraic independence over $\\mathbb{Q}$ of the above numbers by applying Bertrand's theorem on the algebraic independence of the values of the Jacobi theta functions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Algebraic independence of certain infinite products\\n involving the Fibonacci numbers\",\"authors\":\"D. Duverney, Y. Tachiya\",\"doi\":\"10.3792/PJAA.97.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\{F_{n}\\\\}_{n\\\\geq0}$ be the sequence of the Fibonacci numbers. The aim of this paper is to give explicit formulae for the infinite products \\\\[ \\\\prod_{n=1}^{\\\\infty}\\\\left( 1+\\\\frac{1}{F_{n}}\\\\right) ,\\\\qquad\\\\prod_{n=3}^{\\\\infty}\\\\left( 1-\\\\frac{1}{F_{n}}\\\\right) \\\\] in terms of the values of the Jacobi theta functions. From this we deduce the algebraic independence over $\\\\mathbb{Q}$ of the above numbers by applying Bertrand's theorem on the algebraic independence of the values of the Jacobi theta functions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/PJAA.97.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/PJAA.97.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设$\{F_{n}\}_{n\geq0}$为斐波那契数列。本文的目的是根据雅可比函数的值给出无穷积\[ \prod_{n=1}^{\infty}\left( 1+\frac{1}{F_{n}}\right) ,\qquad\prod_{n=3}^{\infty}\left( 1-\frac{1}{F_{n}}\right) \]的显式公式。由此,我们通过应用关于雅可比函数值的代数无关性的Bertrand定理,推导出上述数在$\mathbb{Q}$上的代数无关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Algebraic independence of certain infinite products involving the Fibonacci numbers
Let $\{F_{n}\}_{n\geq0}$ be the sequence of the Fibonacci numbers. The aim of this paper is to give explicit formulae for the infinite products \[ \prod_{n=1}^{\infty}\left( 1+\frac{1}{F_{n}}\right) ,\qquad\prod_{n=3}^{\infty}\left( 1-\frac{1}{F_{n}}\right) \] in terms of the values of the Jacobi theta functions. From this we deduce the algebraic independence over $\mathbb{Q}$ of the above numbers by applying Bertrand's theorem on the algebraic independence of the values of the Jacobi theta functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信