双参数奇摄动椭圆边值问题的混合方法

IF 0.9 Q3 MATHEMATICS, APPLIED
Anuradha Jha, Mohan Krishen Kadalbajoo
{"title":"双参数奇摄动椭圆边值问题的混合方法","authors":"Anuradha Jha,&nbsp;Mohan Krishen Kadalbajoo","doi":"10.1002/cmm4.1210","DOIUrl":null,"url":null,"abstract":"<p>In this article, a hybrid scheme for a two-parameter elliptic problem with regular exponential and boundary layers on Shishkin mesh is analyzed. The hybrid scheme comprises the central difference method in the layer region and the upwind method in the regular part. The use of the central difference in layer region results in a more accurate resolution of layers. The method is shown to have first-order parameter uniform convergence. The numerical results corroborate the error estimates presented here.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1210","citationCount":"0","resultStr":"{\"title\":\"Hybrid method for two parameter singularly perturbed elliptic boundary value problems\",\"authors\":\"Anuradha Jha,&nbsp;Mohan Krishen Kadalbajoo\",\"doi\":\"10.1002/cmm4.1210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, a hybrid scheme for a two-parameter elliptic problem with regular exponential and boundary layers on Shishkin mesh is analyzed. The hybrid scheme comprises the central difference method in the layer region and the upwind method in the regular part. The use of the central difference in layer region results in a more accurate resolution of layers. The method is shown to have first-order parameter uniform convergence. The numerical results corroborate the error estimates presented here.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1210\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了Shishkin网格上具有正则指数层和边界层的两参数椭圆型问题的混合格式。混合方案包括层区中心差法和规则区逆风法。利用层区中心差可以得到更精确的层分辨率。证明了该方法具有一阶参数一致收敛性。数值结果证实了本文给出的误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid method for two parameter singularly perturbed elliptic boundary value problems

In this article, a hybrid scheme for a two-parameter elliptic problem with regular exponential and boundary layers on Shishkin mesh is analyzed. The hybrid scheme comprises the central difference method in the layer region and the upwind method in the regular part. The use of the central difference in layer region results in a more accurate resolution of layers. The method is shown to have first-order parameter uniform convergence. The numerical results corroborate the error estimates presented here.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信