哥伦比亚西南部月降雨量缺失数据的估算:不同方法的比较

Pub Date : 2023-05-26 DOI:10.1590/2318-0331.282320230008
Juan Sebastián Del Castillo-Gómez, T. Canchala, W. A. Torres-López, Y. Carvajal-Escobar, Camilo Ocampo-Marulanda
{"title":"哥伦比亚西南部月降雨量缺失数据的估算:不同方法的比较","authors":"Juan Sebastián Del Castillo-Gómez, T. Canchala, W. A. Torres-López, Y. Carvajal-Escobar, Camilo Ocampo-Marulanda","doi":"10.1590/2318-0331.282320230008","DOIUrl":null,"url":null,"abstract":"ABSTRACT Historical rainfall records are relevant in hydrometeorological studies because they provide information on the spatial features, frequency, and amount of precipitated water in a specific place, therefore, it is essential to make an adequate estimation of missing data. This study evaluated four methods for estimating missing monthly rainfall data at 46-gauge stations in southwestern Colombia covering 1983-2019. The performance of the Normal Ratio (NR), Principal Components Regression (PCR), Principal Least Square Regression (PLSR), and Artificial Neural Networks (ANN) methods were compared using three standardized error metrics: Root Mean Square Error (RMSE), Percent BIAS (PBIAS), and Mean Absolute Error (MAE). The results generally showed a better performance of the nonlinear ANN method. Regarding the linear methods, the best performance was registered by the PLSR, followed by the PCR. The results suggest the applicability of the ANN method in regions with a low density of stations and a high percentage of missing data, such as southwestern Colombia.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of monthly rainfall missing data in Southwestern Colombia: comparing different methods\",\"authors\":\"Juan Sebastián Del Castillo-Gómez, T. Canchala, W. A. Torres-López, Y. Carvajal-Escobar, Camilo Ocampo-Marulanda\",\"doi\":\"10.1590/2318-0331.282320230008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Historical rainfall records are relevant in hydrometeorological studies because they provide information on the spatial features, frequency, and amount of precipitated water in a specific place, therefore, it is essential to make an adequate estimation of missing data. This study evaluated four methods for estimating missing monthly rainfall data at 46-gauge stations in southwestern Colombia covering 1983-2019. The performance of the Normal Ratio (NR), Principal Components Regression (PCR), Principal Least Square Regression (PLSR), and Artificial Neural Networks (ANN) methods were compared using three standardized error metrics: Root Mean Square Error (RMSE), Percent BIAS (PBIAS), and Mean Absolute Error (MAE). The results generally showed a better performance of the nonlinear ANN method. Regarding the linear methods, the best performance was registered by the PLSR, followed by the PCR. The results suggest the applicability of the ANN method in regions with a low density of stations and a high percentage of missing data, such as southwestern Colombia.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/2318-0331.282320230008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2318-0331.282320230008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

历史降雨记录在水文气象研究中具有重要意义,因为它们提供了特定地点降水的空间特征、频率和数量信息,因此,对缺失的数据进行充分的估计至关重要。本研究评估了四种方法来估计哥伦比亚西南部46个测量站1983-2019年缺失的月降雨量数据。使用三种标准化误差指标:均方根误差(RMSE)、百分比偏差(PBIAS)和平均绝对误差(MAE),比较正态比(NR)、主成分回归(PCR)、主最小二乘回归(PLSR)和人工神经网络(ANN)方法的性能。结果表明,非线性神经网络方法具有较好的性能。在线性方法中,PLSR法表现最好,其次是PCR法。结果表明,人工神经网络方法适用于台站密度低、数据缺失率高的地区,如哥伦比亚西南部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Estimation of monthly rainfall missing data in Southwestern Colombia: comparing different methods
ABSTRACT Historical rainfall records are relevant in hydrometeorological studies because they provide information on the spatial features, frequency, and amount of precipitated water in a specific place, therefore, it is essential to make an adequate estimation of missing data. This study evaluated four methods for estimating missing monthly rainfall data at 46-gauge stations in southwestern Colombia covering 1983-2019. The performance of the Normal Ratio (NR), Principal Components Regression (PCR), Principal Least Square Regression (PLSR), and Artificial Neural Networks (ANN) methods were compared using three standardized error metrics: Root Mean Square Error (RMSE), Percent BIAS (PBIAS), and Mean Absolute Error (MAE). The results generally showed a better performance of the nonlinear ANN method. Regarding the linear methods, the best performance was registered by the PLSR, followed by the PCR. The results suggest the applicability of the ANN method in regions with a low density of stations and a high percentage of missing data, such as southwestern Colombia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信