用泰马里语表示加泰罗尼亚固体

IF 0.3 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
C. Yackel
{"title":"用泰马里语表示加泰罗尼亚固体","authors":"C. Yackel","doi":"10.1080/17513472.2022.2145585","DOIUrl":null,"url":null,"abstract":"ABSTRACT All thirteen Catalan solids can be depicted in spherical form via the medium of temari. Eleven of these are obtained by combining Schwartz triangles arising from standard sets of temari guidelines, while the other two correspond to the enantiamorphic Catalans. Examining the thirteen temari in this paper illuminates the symmetries in the Catalan solids. Alternatively, considering the symmetry groups of the solids and their combinatorial properties gives information relevant to their stitching. GRAPHICAL ABSTRACT","PeriodicalId":42612,"journal":{"name":"Journal of Mathematics and the Arts","volume":"47 1","pages":"271 - 286"},"PeriodicalIF":0.3000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Representing Catalan solids in temari\",\"authors\":\"C. Yackel\",\"doi\":\"10.1080/17513472.2022.2145585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT All thirteen Catalan solids can be depicted in spherical form via the medium of temari. Eleven of these are obtained by combining Schwartz triangles arising from standard sets of temari guidelines, while the other two correspond to the enantiamorphic Catalans. Examining the thirteen temari in this paper illuminates the symmetries in the Catalan solids. Alternatively, considering the symmetry groups of the solids and their combinatorial properties gives information relevant to their stitching. GRAPHICAL ABSTRACT\",\"PeriodicalId\":42612,\"journal\":{\"name\":\"Journal of Mathematics and the Arts\",\"volume\":\"47 1\",\"pages\":\"271 - 286\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and the Arts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17513472.2022.2145585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and the Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17513472.2022.2145585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

所有13种加泰罗尼亚固体都可以通过铁玛利介质以球形形式描绘。其中11个是通过组合由标准temari指南集产生的Schwartz三角形而得到的,而另外两个对应于对映异形Catalans。本文通过对13种元素的考察,阐明了加泰罗尼亚固体的对称性。另外,考虑固体的对称群和它们的组合特性可以提供与它们的拼接相关的信息。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representing Catalan solids in temari
ABSTRACT All thirteen Catalan solids can be depicted in spherical form via the medium of temari. Eleven of these are obtained by combining Schwartz triangles arising from standard sets of temari guidelines, while the other two correspond to the enantiamorphic Catalans. Examining the thirteen temari in this paper illuminates the symmetries in the Catalan solids. Alternatively, considering the symmetry groups of the solids and their combinatorial properties gives information relevant to their stitching. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics and the Arts
Journal of Mathematics and the Arts MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
0.50
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信