基于神经网络ResNet-50的Sentinel-2卫星图像分类研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
I. Bychkov, G. M. Ruzhnikov, R. Fedorov, A. K. Popova, Y. V. Avramenko
{"title":"基于神经网络ResNet-50的Sentinel-2卫星图像分类研究","authors":"I. Bychkov, G. M. Ruzhnikov, R. Fedorov, A. K. Popova, Y. V. Avramenko","doi":"10.18287/2412-6179-co-1216","DOIUrl":null,"url":null,"abstract":"Various combinations of neural network parameters and sets of input data for satellite image classification are considered in the article. The training set is completed with a NDVI (normalized difference vegetation index) and local binary patterns. Testing of classifiers created on a different number of epochs and samples is carried out. Values of the neural network hyperparameters are determined that allow a classification accuracy of 0.70 and an F-measure of 0.65 to be achieved. Separation into classes with similar spectral characteristics is shown to offer low classification quality at different parameters and input data sets. Additional information is required. For example, for forests to be divided into more detailed classes, one needs to employ classifiers that use images from different seasons and vegetation periods. In addition, the training set needs to be extended to take into account various natural zones, soils, etc.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On classification of Sentinel-2 satellite images by a neural network ResNet-50\",\"authors\":\"I. Bychkov, G. M. Ruzhnikov, R. Fedorov, A. K. Popova, Y. V. Avramenko\",\"doi\":\"10.18287/2412-6179-co-1216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various combinations of neural network parameters and sets of input data for satellite image classification are considered in the article. The training set is completed with a NDVI (normalized difference vegetation index) and local binary patterns. Testing of classifiers created on a different number of epochs and samples is carried out. Values of the neural network hyperparameters are determined that allow a classification accuracy of 0.70 and an F-measure of 0.65 to be achieved. Separation into classes with similar spectral characteristics is shown to offer low classification quality at different parameters and input data sets. Additional information is required. For example, for forests to be divided into more detailed classes, one needs to employ classifiers that use images from different seasons and vegetation periods. In addition, the training set needs to be extended to take into account various natural zones, soils, etc.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1216\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1216","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文考虑了神经网络参数和输入数据集的各种组合用于卫星图像分类。训练集由归一化植被指数(NDVI)和局部二值模式完成。在不同数量的时代和样本上创建的分类器进行了测试。确定了神经网络超参数的值,允许实现0.70的分类精度和0.65的f度量。在不同的参数和输入数据集下,具有相似光谱特征的分类质量较低。需要提供其他信息。例如,为了将森林划分为更详细的类别,需要使用使用来自不同季节和植被期的图像的分类器。此外,训练集需要扩展,以考虑各种自然地带、土壤等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On classification of Sentinel-2 satellite images by a neural network ResNet-50
Various combinations of neural network parameters and sets of input data for satellite image classification are considered in the article. The training set is completed with a NDVI (normalized difference vegetation index) and local binary patterns. Testing of classifiers created on a different number of epochs and samples is carried out. Values of the neural network hyperparameters are determined that allow a classification accuracy of 0.70 and an F-measure of 0.65 to be achieved. Separation into classes with similar spectral characteristics is shown to offer low classification quality at different parameters and input data sets. Additional information is required. For example, for forests to be divided into more detailed classes, one needs to employ classifiers that use images from different seasons and vegetation periods. In addition, the training set needs to be extended to take into account various natural zones, soils, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信