I. Bychkov, G. M. Ruzhnikov, R. Fedorov, A. K. Popova, Y. V. Avramenko
{"title":"基于神经网络ResNet-50的Sentinel-2卫星图像分类研究","authors":"I. Bychkov, G. M. Ruzhnikov, R. Fedorov, A. K. Popova, Y. V. Avramenko","doi":"10.18287/2412-6179-co-1216","DOIUrl":null,"url":null,"abstract":"Various combinations of neural network parameters and sets of input data for satellite image classification are considered in the article. The training set is completed with a NDVI (normalized difference vegetation index) and local binary patterns. Testing of classifiers created on a different number of epochs and samples is carried out. Values of the neural network hyperparameters are determined that allow a classification accuracy of 0.70 and an F-measure of 0.65 to be achieved. Separation into classes with similar spectral characteristics is shown to offer low classification quality at different parameters and input data sets. Additional information is required. For example, for forests to be divided into more detailed classes, one needs to employ classifiers that use images from different seasons and vegetation periods. In addition, the training set needs to be extended to take into account various natural zones, soils, etc.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On classification of Sentinel-2 satellite images by a neural network ResNet-50\",\"authors\":\"I. Bychkov, G. M. Ruzhnikov, R. Fedorov, A. K. Popova, Y. V. Avramenko\",\"doi\":\"10.18287/2412-6179-co-1216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various combinations of neural network parameters and sets of input data for satellite image classification are considered in the article. The training set is completed with a NDVI (normalized difference vegetation index) and local binary patterns. Testing of classifiers created on a different number of epochs and samples is carried out. Values of the neural network hyperparameters are determined that allow a classification accuracy of 0.70 and an F-measure of 0.65 to be achieved. Separation into classes with similar spectral characteristics is shown to offer low classification quality at different parameters and input data sets. Additional information is required. For example, for forests to be divided into more detailed classes, one needs to employ classifiers that use images from different seasons and vegetation periods. In addition, the training set needs to be extended to take into account various natural zones, soils, etc.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1216\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1216","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On classification of Sentinel-2 satellite images by a neural network ResNet-50
Various combinations of neural network parameters and sets of input data for satellite image classification are considered in the article. The training set is completed with a NDVI (normalized difference vegetation index) and local binary patterns. Testing of classifiers created on a different number of epochs and samples is carried out. Values of the neural network hyperparameters are determined that allow a classification accuracy of 0.70 and an F-measure of 0.65 to be achieved. Separation into classes with similar spectral characteristics is shown to offer low classification quality at different parameters and input data sets. Additional information is required. For example, for forests to be divided into more detailed classes, one needs to employ classifiers that use images from different seasons and vegetation periods. In addition, the training set needs to be extended to take into account various natural zones, soils, etc.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.