改进了多重代码的本地测试

Dan Karliner, A. Ta-Shma
{"title":"改进了多重代码的本地测试","authors":"Dan Karliner, A. Ta-Shma","doi":"10.4230/LIPIcs.APPROX/RANDOM.2022.11","DOIUrl":null,"url":null,"abstract":"Multiplicity codes are a generalization of Reed-Muller codes which include derivatives as well as the values of low degree polynomials, evaluated in every point in F mp . Similarly to Reed-Muller codes, multiplicity codes have a local nature that allows for local correction and local testing. Recently, [6] showed that the plane test , which tests the degree of the codeword on a random plane, is a good local tester for small enough degrees . In this work we simplify and extend the analysis of local testing for multiplicity codes, giving a more general and tight analysis. In particular, we show that multiplicity codes MRM p ( m, d, s ) over prime fields with arbitrary d are locally testable by an appropriate k -flat test , which tests the degree of the codeword on a random k -dimensional affine subspace. The relationship between the degree parameter d and the required dimension k is shown to be nearly optimal, and improves on [6] in the case of planes. Our analysis relies on a generalization of the technique of canonincal monomials introduced in [5]. Generalizing canonical monomials to the multiplicity case requires substantially different proofs which exploit the algebraic structure of multiplicity codes.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"39 1","pages":"11:1-11:19"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved local testing for multiplicity codes\",\"authors\":\"Dan Karliner, A. Ta-Shma\",\"doi\":\"10.4230/LIPIcs.APPROX/RANDOM.2022.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiplicity codes are a generalization of Reed-Muller codes which include derivatives as well as the values of low degree polynomials, evaluated in every point in F mp . Similarly to Reed-Muller codes, multiplicity codes have a local nature that allows for local correction and local testing. Recently, [6] showed that the plane test , which tests the degree of the codeword on a random plane, is a good local tester for small enough degrees . In this work we simplify and extend the analysis of local testing for multiplicity codes, giving a more general and tight analysis. In particular, we show that multiplicity codes MRM p ( m, d, s ) over prime fields with arbitrary d are locally testable by an appropriate k -flat test , which tests the degree of the codeword on a random k -dimensional affine subspace. The relationship between the degree parameter d and the required dimension k is shown to be nearly optimal, and improves on [6] in the case of planes. Our analysis relies on a generalization of the technique of canonincal monomials introduced in [5]. Generalizing canonical monomials to the multiplicity case requires substantially different proofs which exploit the algebraic structure of multiplicity codes.\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"39 1\",\"pages\":\"11:1-11:19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多重码是Reed-Muller码的一种推广,它包括导数和低次多项式的值,在fmp中的每个点上进行评估。与Reed-Muller码类似,多重码具有局部性质,允许局部校正和局部测试。最近,[6]证明了平面测试,即测试码字在随机平面上的度,是一个足够小度的很好的局部测试方法。在本文中,我们简化和扩展了多重码的局部测试分析,给出了一个更一般和严格的分析。特别地,我们证明了具有任意d的素域上的多重码MRM p (m, d, s)可以用一个适当的k -平坦检验来局部检验,该检验用于检验码字在随机k维仿射子空间上的度。度参数d与所需维度k之间的关系接近最优,并且在平面的情况下在[6]上得到改善。我们的分析依赖于b[5]中引入的标准单项式技术的推广。将正则单项式推广到多重情况需要大量不同的证明,这些证明利用了多重码的代数结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved local testing for multiplicity codes
Multiplicity codes are a generalization of Reed-Muller codes which include derivatives as well as the values of low degree polynomials, evaluated in every point in F mp . Similarly to Reed-Muller codes, multiplicity codes have a local nature that allows for local correction and local testing. Recently, [6] showed that the plane test , which tests the degree of the codeword on a random plane, is a good local tester for small enough degrees . In this work we simplify and extend the analysis of local testing for multiplicity codes, giving a more general and tight analysis. In particular, we show that multiplicity codes MRM p ( m, d, s ) over prime fields with arbitrary d are locally testable by an appropriate k -flat test , which tests the degree of the codeword on a random k -dimensional affine subspace. The relationship between the degree parameter d and the required dimension k is shown to be nearly optimal, and improves on [6] in the case of planes. Our analysis relies on a generalization of the technique of canonincal monomials introduced in [5]. Generalizing canonical monomials to the multiplicity case requires substantially different proofs which exploit the algebraic structure of multiplicity codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信