OPTIMISTA:异步FSMs的状态最小化,以获得最佳输出逻辑

Robert M. Fuhrer, S. Nowick
{"title":"OPTIMISTA:异步FSMs的状态最小化,以获得最佳输出逻辑","authors":"Robert M. Fuhrer, S. Nowick","doi":"10.1109/ICCAD.1999.810610","DOIUrl":null,"url":null,"abstract":"The optimal state minimization problem is to select a reduced state machine having the best logic implementation over all possible state reductions and encodings. The OPTIMIST (OPTImal MInimization of STates) algorithm (R.M. Fuhrer et al., 1997) was the first general solution to this problem for synchronous finite state machines (FSMs). In this paper, we present the first solution for asynchronous FSMs. This paper makes two contributions. First, we introduce OPTIMISTA (OPTIMIST-Asynchronous), a new algorithm which guarantees optimum 2-level output logic for asynchronous FSMs. In asynchronous machines, output logic is often critical: it usually determines the machine latency. The algorithm is formulated as a binate constraint satisfaction problem, which is solved using a binate solver. The second contribution is a novel alternative result: the unreduced machine itself can be used directly to obtain minimum-cardinality output logic. Thus, this paper presents two approaches: using OPTIMISTA, which simultaneously performs state and logic minimization; or using no state reduction (if output logic cardinality is of sole interest). Extensions for literal optimization, targetted to multi-level logic, are also proposed.","PeriodicalId":6414,"journal":{"name":"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"OPTIMISTA: state minimization of asynchronous FSMs for optimum output logic\",\"authors\":\"Robert M. Fuhrer, S. Nowick\",\"doi\":\"10.1109/ICCAD.1999.810610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimal state minimization problem is to select a reduced state machine having the best logic implementation over all possible state reductions and encodings. The OPTIMIST (OPTImal MInimization of STates) algorithm (R.M. Fuhrer et al., 1997) was the first general solution to this problem for synchronous finite state machines (FSMs). In this paper, we present the first solution for asynchronous FSMs. This paper makes two contributions. First, we introduce OPTIMISTA (OPTIMIST-Asynchronous), a new algorithm which guarantees optimum 2-level output logic for asynchronous FSMs. In asynchronous machines, output logic is often critical: it usually determines the machine latency. The algorithm is formulated as a binate constraint satisfaction problem, which is solved using a binate solver. The second contribution is a novel alternative result: the unreduced machine itself can be used directly to obtain minimum-cardinality output logic. Thus, this paper presents two approaches: using OPTIMISTA, which simultaneously performs state and logic minimization; or using no state reduction (if output logic cardinality is of sole interest). Extensions for literal optimization, targetted to multi-level logic, are also proposed.\",\"PeriodicalId\":6414,\"journal\":{\"name\":\"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1999.810610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1999.810610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

最佳状态最小化问题是在所有可能的状态约简和编码中选择一个具有最佳逻辑实现的约简状态机。乐观主义(状态的最优最小化)算法(R.M. Fuhrer等人,1997)是同步有限状态机(FSMs)这个问题的第一个通用解决方案。在本文中,我们提出了异步FSMs的第一种解决方案。本文有两个贡献。首先,我们介绍了一种新的算法OPTIMISTA (OPTIMIST-Asynchronous),它保证了异步fsm的最佳2级输出逻辑。在异步机器中,输出逻辑通常是关键的:它通常决定了机器的延迟。该算法被表述为一个二叉形约束满足问题,并使用二叉形求解器对其进行求解。第二个贡献是一个新颖的替代结果:未约简的机器本身可以直接用于获得最小基数输出逻辑。因此,本文提出了两种方法:使用OPTIMISTA,同时执行状态和逻辑最小化;或者不使用状态缩减(如果只关心输出逻辑基数)。还提出了针对多层次逻辑的文字优化扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OPTIMISTA: state minimization of asynchronous FSMs for optimum output logic
The optimal state minimization problem is to select a reduced state machine having the best logic implementation over all possible state reductions and encodings. The OPTIMIST (OPTImal MInimization of STates) algorithm (R.M. Fuhrer et al., 1997) was the first general solution to this problem for synchronous finite state machines (FSMs). In this paper, we present the first solution for asynchronous FSMs. This paper makes two contributions. First, we introduce OPTIMISTA (OPTIMIST-Asynchronous), a new algorithm which guarantees optimum 2-level output logic for asynchronous FSMs. In asynchronous machines, output logic is often critical: it usually determines the machine latency. The algorithm is formulated as a binate constraint satisfaction problem, which is solved using a binate solver. The second contribution is a novel alternative result: the unreduced machine itself can be used directly to obtain minimum-cardinality output logic. Thus, this paper presents two approaches: using OPTIMISTA, which simultaneously performs state and logic minimization; or using no state reduction (if output logic cardinality is of sole interest). Extensions for literal optimization, targetted to multi-level logic, are also proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信