求解非线性方程的数值技术的数值二阶方法

U. K. Qureshi, A. Pirzada, I. A. Bozdar, M. Memon
{"title":"求解非线性方程的数值技术的数值二阶方法","authors":"U. K. Qureshi, A. Pirzada, I. A. Bozdar, M. Memon","doi":"10.26692/surj/2019.12.115","DOIUrl":null,"url":null,"abstract":"Various iterated methods have been recommended to solve nonlinear equations. This study is suggesting a Numerical Method for solving nonlinear problems. This Numerical method has order of convergence is two, and it is derived from Taylor series expansions and Adomian’s decomposition technique. Numerous numerical illustrations to demonstrate the competence of the proposed method by the Assessment of Steffensen method and Newton Raphson Method.","PeriodicalId":21859,"journal":{"name":"Sindh University Research Journal","volume":"525 1","pages":"729-732"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Second Order Method of Numerical Techniques for Solving Nonlinear Equations\",\"authors\":\"U. K. Qureshi, A. Pirzada, I. A. Bozdar, M. Memon\",\"doi\":\"10.26692/surj/2019.12.115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various iterated methods have been recommended to solve nonlinear equations. This study is suggesting a Numerical Method for solving nonlinear problems. This Numerical method has order of convergence is two, and it is derived from Taylor series expansions and Adomian’s decomposition technique. Numerous numerical illustrations to demonstrate the competence of the proposed method by the Assessment of Steffensen method and Newton Raphson Method.\",\"PeriodicalId\":21859,\"journal\":{\"name\":\"Sindh University Research Journal\",\"volume\":\"525 1\",\"pages\":\"729-732\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sindh University Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26692/surj/2019.12.115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sindh University Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26692/surj/2019.12.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

各种迭代方法已被推荐用于求解非线性方程。本研究提出了一种求解非线性问题的数值方法。该数值方法收敛阶为2,由泰勒级数展开和Adomian分解技术推导而来。通过对Steffensen方法和Newton Raphson方法的评价,给出了大量的数值实例来证明所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Second Order Method of Numerical Techniques for Solving Nonlinear Equations
Various iterated methods have been recommended to solve nonlinear equations. This study is suggesting a Numerical Method for solving nonlinear problems. This Numerical method has order of convergence is two, and it is derived from Taylor series expansions and Adomian’s decomposition technique. Numerous numerical illustrations to demonstrate the competence of the proposed method by the Assessment of Steffensen method and Newton Raphson Method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信