Kostas Ferles, Jacob Van Geffen, Işıl Dillig, Y. Smaragdakis
{"title":"自动信号放置的符号推理","authors":"Kostas Ferles, Jacob Van Geffen, Işıl Dillig, Y. Smaragdakis","doi":"10.1145/3296979.3192395","DOIUrl":null,"url":null,"abstract":"Explicit signaling between threads is a perennial cause of bugs in concurrent programs. While there are several run-time techniques to automatically notify threads upon the availability of some shared resource, such techniques are not widely-adopted due to their run-time overhead. This paper proposes a new solution based on static analysis for automatically generating a performant explicit-signal program from its corresponding implicit-signal implementation. The key idea is to generate verification conditions that allow us to minimize the number of required signals and unnecessary context switches, while guaranteeing semantic equivalence between the source and target programs. We have implemented our method in a tool called Expresso and evaluate it on challenging benchmarks from prior papers and open-source software. Expresso-generated code significantly outperforms past automatic signaling mechanisms (avg. 1.56x speedup) and closely matches the performance of hand-optimized explicit-signal code.","PeriodicalId":50923,"journal":{"name":"ACM Sigplan Notices","volume":"1 1","pages":"120 - 134"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Symbolic reasoning for automatic signal placement\",\"authors\":\"Kostas Ferles, Jacob Van Geffen, Işıl Dillig, Y. Smaragdakis\",\"doi\":\"10.1145/3296979.3192395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explicit signaling between threads is a perennial cause of bugs in concurrent programs. While there are several run-time techniques to automatically notify threads upon the availability of some shared resource, such techniques are not widely-adopted due to their run-time overhead. This paper proposes a new solution based on static analysis for automatically generating a performant explicit-signal program from its corresponding implicit-signal implementation. The key idea is to generate verification conditions that allow us to minimize the number of required signals and unnecessary context switches, while guaranteeing semantic equivalence between the source and target programs. We have implemented our method in a tool called Expresso and evaluate it on challenging benchmarks from prior papers and open-source software. Expresso-generated code significantly outperforms past automatic signaling mechanisms (avg. 1.56x speedup) and closely matches the performance of hand-optimized explicit-signal code.\",\"PeriodicalId\":50923,\"journal\":{\"name\":\"ACM Sigplan Notices\",\"volume\":\"1 1\",\"pages\":\"120 - 134\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Sigplan Notices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3296979.3192395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigplan Notices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3296979.3192395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Explicit signaling between threads is a perennial cause of bugs in concurrent programs. While there are several run-time techniques to automatically notify threads upon the availability of some shared resource, such techniques are not widely-adopted due to their run-time overhead. This paper proposes a new solution based on static analysis for automatically generating a performant explicit-signal program from its corresponding implicit-signal implementation. The key idea is to generate verification conditions that allow us to minimize the number of required signals and unnecessary context switches, while guaranteeing semantic equivalence between the source and target programs. We have implemented our method in a tool called Expresso and evaluate it on challenging benchmarks from prior papers and open-source software. Expresso-generated code significantly outperforms past automatic signaling mechanisms (avg. 1.56x speedup) and closely matches the performance of hand-optimized explicit-signal code.
期刊介绍:
The ACM Special Interest Group on Programming Languages explores programming language concepts and tools, focusing on design, implementation, practice, and theory. Its members are programming language developers, educators, implementers, researchers, theoreticians, and users. SIGPLAN sponsors several major annual conferences, including the Symposium on Principles of Programming Languages (POPL), the Symposium on Principles and Practice of Parallel Programming (PPoPP), the Conference on Programming Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), the International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), as well as more than a dozen other events of either smaller size or in-cooperation with other SIGs. The monthly "ACM SIGPLAN Notices" publishes proceedings of selected sponsored events and an annual report on SIGPLAN activities. Members receive discounts on conference registrations and free access to ACM SIGPLAN publications in the ACM Digital Library. SIGPLAN recognizes significant research and service contributions of individuals with a variety of awards, supports current members through the Professional Activities Committee, and encourages future programming language enthusiasts with frequent Programming Languages Mentoring Workshops (PLMW).