多元多项式稀疏插值的鲁棒算法

Dai Numahata, Hiroshi Sekigawa
{"title":"多元多项式稀疏插值的鲁棒算法","authors":"Dai Numahata, Hiroshi Sekigawa","doi":"10.1145/3338637.3338648","DOIUrl":null,"url":null,"abstract":"We consider the problem of symbolic-numeric sparse interpolation of multivariate polynomials. The problem is to find the coefficients and the exponents of a given black-box polynomial [EQUATION] by evaluating the value of <i>f</i>(<i>x</i><sub>1</sub>,..., <i>x<sub>n</sub></i>) at any point in C<sup><i>n</i></sup> in floating-point arithmetic and by using the conditions of the input.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"169 1","pages":"145-147"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust algorithms for sparse interpolation of multivariate polynomials\",\"authors\":\"Dai Numahata, Hiroshi Sekigawa\",\"doi\":\"10.1145/3338637.3338648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of symbolic-numeric sparse interpolation of multivariate polynomials. The problem is to find the coefficients and the exponents of a given black-box polynomial [EQUATION] by evaluating the value of <i>f</i>(<i>x</i><sub>1</sub>,..., <i>x<sub>n</sub></i>) at any point in C<sup><i>n</i></sup> in floating-point arithmetic and by using the conditions of the input.\",\"PeriodicalId\":7093,\"journal\":{\"name\":\"ACM Commun. Comput. Algebra\",\"volume\":\"169 1\",\"pages\":\"145-147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Commun. Comput. Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3338637.3338648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338637.3338648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究多元多项式的符号-数值稀疏插值问题。问题是通过计算f(x1,…)的值来找到给定黑盒多项式[方程]的系数和指数。, xn)在Cn中的任意一点,在浮点运算中,并使用输入的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust algorithms for sparse interpolation of multivariate polynomials
We consider the problem of symbolic-numeric sparse interpolation of multivariate polynomials. The problem is to find the coefficients and the exponents of a given black-box polynomial [EQUATION] by evaluating the value of f(x1,..., xn) at any point in Cn in floating-point arithmetic and by using the conditions of the input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信