连续血压瞬时频率的功率谱、连续小波变换和Hilbert-Huang变换的比较

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Kathrine Knai, G. Kulia, M. Molinas, N. K. Skjaervold
{"title":"连续血压瞬时频率的功率谱、连续小波变换和Hilbert-Huang变换的比较","authors":"Kathrine Knai, G. Kulia, M. Molinas, N. K. Skjaervold","doi":"10.1142/S2424922X17500097","DOIUrl":null,"url":null,"abstract":"Continuous biological signals, like blood pressure recordings, exhibit nonlinear and nonstationary properties which must be considered during their analysis. Heart rate variability analyses have identified several frequency components and their autonomic origin. There is need for more knowledge on the time-changing properties of these frequencies. The power spectrum, continuous wavelet transform and Hilbert–Huang transform are applied on a continuous blood pressure signal to investigate how the different methods compare to each other. The Hilbert–Huang transform shows high ability to analyze such data, and can, by identifying instantaneous frequency shifts, provide new insights into the nature of these kinds of data.","PeriodicalId":47145,"journal":{"name":"Advances in Data Science and Adaptive Analysis","volume":"60 1","pages":"1750009:1-1750009:9"},"PeriodicalIF":0.5000,"publicationDate":"2017-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Instantaneous Frequencies of Continuous Blood Pressure a Comparison of the Power Spectrum, the Continuous Wavelet Transform and the Hilbert-Huang Transform\",\"authors\":\"Kathrine Knai, G. Kulia, M. Molinas, N. K. Skjaervold\",\"doi\":\"10.1142/S2424922X17500097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous biological signals, like blood pressure recordings, exhibit nonlinear and nonstationary properties which must be considered during their analysis. Heart rate variability analyses have identified several frequency components and their autonomic origin. There is need for more knowledge on the time-changing properties of these frequencies. The power spectrum, continuous wavelet transform and Hilbert–Huang transform are applied on a continuous blood pressure signal to investigate how the different methods compare to each other. The Hilbert–Huang transform shows high ability to analyze such data, and can, by identifying instantaneous frequency shifts, provide new insights into the nature of these kinds of data.\",\"PeriodicalId\":47145,\"journal\":{\"name\":\"Advances in Data Science and Adaptive Analysis\",\"volume\":\"60 1\",\"pages\":\"1750009:1-1750009:9\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Science and Adaptive Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2424922X17500097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Science and Adaptive Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2424922X17500097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

连续的生物信号,如血压记录,表现出非线性和非平稳的特性,这在分析过程中必须考虑。心率变异性分析已经确定了几种频率成分及其自主起源。需要对这些频率随时间变化的特性有更多的了解。对连续血压信号进行功率谱、连续小波变换和Hilbert-Huang变换,比较不同方法的优缺点。Hilbert-Huang变换显示了分析此类数据的高能力,并且可以通过识别瞬时频移,为这类数据的本质提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instantaneous Frequencies of Continuous Blood Pressure a Comparison of the Power Spectrum, the Continuous Wavelet Transform and the Hilbert-Huang Transform
Continuous biological signals, like blood pressure recordings, exhibit nonlinear and nonstationary properties which must be considered during their analysis. Heart rate variability analyses have identified several frequency components and their autonomic origin. There is need for more knowledge on the time-changing properties of these frequencies. The power spectrum, continuous wavelet transform and Hilbert–Huang transform are applied on a continuous blood pressure signal to investigate how the different methods compare to each other. The Hilbert–Huang transform shows high ability to analyze such data, and can, by identifying instantaneous frequency shifts, provide new insights into the nature of these kinds of data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Data Science and Adaptive Analysis
Advances in Data Science and Adaptive Analysis MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信