{"title":"有限单元法的对偶加权残差估计","authors":"P. Stolfo, A. Rademacher, A. Schröder","doi":"10.1515/jnma-2017-0103","DOIUrl":null,"url":null,"abstract":"Abstract The paper presents a goal-oriented error control based on the dual weighted residual method (DWR) for the finite cell method (FCM), which is characterized by an enclosing domain covering the domain of the problem. The error identity derived by the DWR method allows for a combined treatment of the discretization and quadrature error introduced by the FCM. We present an adaptive strategy with the aim to balance these two error contributions. Its performance is demonstrated for several two-dimensional examples.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Dual weighted residual error estimation for the finite cell method\",\"authors\":\"P. Stolfo, A. Rademacher, A. Schröder\",\"doi\":\"10.1515/jnma-2017-0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper presents a goal-oriented error control based on the dual weighted residual method (DWR) for the finite cell method (FCM), which is characterized by an enclosing domain covering the domain of the problem. The error identity derived by the DWR method allows for a combined treatment of the discretization and quadrature error introduced by the FCM. We present an adaptive strategy with the aim to balance these two error contributions. Its performance is demonstrated for several two-dimensional examples.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2019-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2017-0103\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2017-0103","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Dual weighted residual error estimation for the finite cell method
Abstract The paper presents a goal-oriented error control based on the dual weighted residual method (DWR) for the finite cell method (FCM), which is characterized by an enclosing domain covering the domain of the problem. The error identity derived by the DWR method allows for a combined treatment of the discretization and quadrature error introduced by the FCM. We present an adaptive strategy with the aim to balance these two error contributions. Its performance is demonstrated for several two-dimensional examples.
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.