你不能这么建议?!

Heiki-Jaan Kaalep, Flammie A. Pirinen, S. Moshagen
{"title":"你不能这么建议?!","authors":"Heiki-Jaan Kaalep, Flammie A. Pirinen, S. Moshagen","doi":"10.7557/12.6349","DOIUrl":null,"url":null,"abstract":"In this article, we study correction of spelling errors, specifically on how the spelling errors are made and how can we model them computationally in order to fix them.The article describes two different approaches to generating spelling correction suggestions for three Uralic languages: Estonian, North Sámi and South Sámi.The first approach of modelling spelling errors is rule-based, where experts write rules that describe the kind of errors are made, and these are compiled into finite-state automaton that models the errors.The second is data-based, where we show a machine learning algorithm a corpus of errors that humans have made, and it creates a neural network that can model the errors.Both approaches require collection of error corpora and understanding its contents; therefore we also describe the actual errors we have seen in detail.We find that while both approaches create error correction systems, with current resources the expert-build systems are still more reliable.","PeriodicalId":29976,"journal":{"name":"Nordlyd Tromso University Working Papers on Language Linguistics","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"You can’t suggest that?!\",\"authors\":\"Heiki-Jaan Kaalep, Flammie A. Pirinen, S. Moshagen\",\"doi\":\"10.7557/12.6349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study correction of spelling errors, specifically on how the spelling errors are made and how can we model them computationally in order to fix them.The article describes two different approaches to generating spelling correction suggestions for three Uralic languages: Estonian, North Sámi and South Sámi.The first approach of modelling spelling errors is rule-based, where experts write rules that describe the kind of errors are made, and these are compiled into finite-state automaton that models the errors.The second is data-based, where we show a machine learning algorithm a corpus of errors that humans have made, and it creates a neural network that can model the errors.Both approaches require collection of error corpora and understanding its contents; therefore we also describe the actual errors we have seen in detail.We find that while both approaches create error correction systems, with current resources the expert-build systems are still more reliable.\",\"PeriodicalId\":29976,\"journal\":{\"name\":\"Nordlyd Tromso University Working Papers on Language Linguistics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nordlyd Tromso University Working Papers on Language Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7557/12.6349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nordlyd Tromso University Working Papers on Language Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7557/12.6349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将研究拼写错误的纠正,特别是拼写错误是如何产生的以及如何通过计算对它们进行建模来修复它们。本文描述了为三种乌拉尔语言(爱沙尼亚语、北语Sámi和南语Sámi)生成拼写纠正建议的两种不同方法。建模拼写错误的第一种方法是基于规则的,专家编写描述错误类型的规则,这些规则被编译成有限状态自动机,对错误进行建模。第二种是基于数据的,我们向机器学习算法展示人类犯过的错误的语料库,然后它创建一个神经网络来模拟这些错误。这两种方法都需要收集错误语料库并理解其内容;因此,我们还详细描述了我们所看到的实际误差。我们发现,虽然这两种方法都创建了纠错系统,但在现有资源下,专家构建的系统仍然更可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
You can’t suggest that?!
In this article, we study correction of spelling errors, specifically on how the spelling errors are made and how can we model them computationally in order to fix them.The article describes two different approaches to generating spelling correction suggestions for three Uralic languages: Estonian, North Sámi and South Sámi.The first approach of modelling spelling errors is rule-based, where experts write rules that describe the kind of errors are made, and these are compiled into finite-state automaton that models the errors.The second is data-based, where we show a machine learning algorithm a corpus of errors that humans have made, and it creates a neural network that can model the errors.Both approaches require collection of error corpora and understanding its contents; therefore we also describe the actual errors we have seen in detail.We find that while both approaches create error correction systems, with current resources the expert-build systems are still more reliable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
25
审稿时长
38 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信