机器学习在先进3D NAND技术节点主芯片铜接触测量中的应用

Michael Meng, Albert Li, Andrew Zhang, Leeming Tu, Haydn Zhou, J. Mi, Xi Zou
{"title":"机器学习在先进3D NAND技术节点主芯片铜接触测量中的应用","authors":"Michael Meng, Albert Li, Andrew Zhang, Leeming Tu, Haydn Zhou, J. Mi, Xi Zou","doi":"10.1109/ASMC49169.2020.9185390","DOIUrl":null,"url":null,"abstract":"Metrology measurements of the top copper contact in the main chip area is critical to predict the subsequent electrical performance in advanced 3D NAND technology nodes. Conventional CDSEM is used in the determination of top copper CD while the accurate measurement of copper depth remains challenging. In this paper, we propose a new approach that successfully explored the use of machine learning to combine the advantages of optical Critical Dimension (OCD) and picosecond ultrasonic technology (PULSE™) for high volume manufacturing (HVM) measurements in the main chip area. Results demonstrate that by using machine learning, we were able to combine the PULSE reference with cross-section microscopy results to successfully train the OCD data set. OCD measurements are rapid at <1s/site and meets the HVM need for extensive sampling and allows for in-line process control of the top copper contact height. This approach also opens the possibilities for application of machine learning for in-line 3D NAND monitoring process control by combining multiple methods and exploiting the full potential of each of these technologies.","PeriodicalId":6771,"journal":{"name":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"78 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Adoption of Machine Learning in the Measurement of Copper Contact on the Main Chip in Advanced 3D NAND Technology Nodes\",\"authors\":\"Michael Meng, Albert Li, Andrew Zhang, Leeming Tu, Haydn Zhou, J. Mi, Xi Zou\",\"doi\":\"10.1109/ASMC49169.2020.9185390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metrology measurements of the top copper contact in the main chip area is critical to predict the subsequent electrical performance in advanced 3D NAND technology nodes. Conventional CDSEM is used in the determination of top copper CD while the accurate measurement of copper depth remains challenging. In this paper, we propose a new approach that successfully explored the use of machine learning to combine the advantages of optical Critical Dimension (OCD) and picosecond ultrasonic technology (PULSE™) for high volume manufacturing (HVM) measurements in the main chip area. Results demonstrate that by using machine learning, we were able to combine the PULSE reference with cross-section microscopy results to successfully train the OCD data set. OCD measurements are rapid at <1s/site and meets the HVM need for extensive sampling and allows for in-line process control of the top copper contact height. This approach also opens the possibilities for application of machine learning for in-line 3D NAND monitoring process control by combining multiple methods and exploiting the full potential of each of these technologies.\",\"PeriodicalId\":6771,\"journal\":{\"name\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"78 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC49169.2020.9185390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC49169.2020.9185390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在先进的3D NAND技术节点中,主芯片区域顶部铜触点的计量测量对于预测后续电气性能至关重要。传统的CDSEM用于测定顶部铜CD,但铜深度的精确测量仍然具有挑战性。在本文中,我们提出了一种新方法,成功探索了使用机器学习将光学临界尺寸(OCD)和皮秒超声技术(PULSE™)的优势结合起来,用于主芯片区域的大批量制造(HVM)测量。结果表明,通过使用机器学习,我们能够将PULSE参考与截面显微镜结果结合起来,成功训练OCD数据集。OCD测量在<1s/site的速度下快速,满足HVM对广泛采样的需求,并允许对顶部铜接触高度进行在线过程控制。这种方法还通过结合多种方法和利用每种技术的全部潜力,为机器学习在在线3D NAND监控过程控制中的应用提供了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Adoption of Machine Learning in the Measurement of Copper Contact on the Main Chip in Advanced 3D NAND Technology Nodes
Metrology measurements of the top copper contact in the main chip area is critical to predict the subsequent electrical performance in advanced 3D NAND technology nodes. Conventional CDSEM is used in the determination of top copper CD while the accurate measurement of copper depth remains challenging. In this paper, we propose a new approach that successfully explored the use of machine learning to combine the advantages of optical Critical Dimension (OCD) and picosecond ultrasonic technology (PULSE™) for high volume manufacturing (HVM) measurements in the main chip area. Results demonstrate that by using machine learning, we were able to combine the PULSE reference with cross-section microscopy results to successfully train the OCD data set. OCD measurements are rapid at <1s/site and meets the HVM need for extensive sampling and allows for in-line process control of the top copper contact height. This approach also opens the possibilities for application of machine learning for in-line 3D NAND monitoring process control by combining multiple methods and exploiting the full potential of each of these technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信