具有四点边值条件的非线性四阶常微分方程的对称正解:不动点理论方法

M. Asaduzzaman, Md. Zulfikar Ali
{"title":"具有四点边值条件的非线性四阶常微分方程的对称正解:不动点理论方法","authors":"M. Asaduzzaman, Md. Zulfikar Ali","doi":"10.22436/jnsa.013.06.06","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to investigate the existence of symmetric positive solutions of the following nonlinear fourth order system of ordinary differential equations{ −u(4)(t) = f(t, v), −v(4)(t) = g(t, u), t ∈ [0, 1], with the four-point boundary value conditions { u(t) = u(1 − t), u′′′(0) − u′′′(1) = u(t1) + u(t2), v(t) = v(1 − t), v′′′(0) − v′′′(1) = v(t1) + v(t2), 0 < t1 < t2 < 1. By applying Krasnoselskii’s fixed point theorem and under suitable conditions, we establish the existence of at least one or at least two symmetric positive solutions of the above mentioned fourth order four-point boundary value problem in cone. Some particular examples are provided to support the analytic proof.","PeriodicalId":22770,"journal":{"name":"The Journal of Nonlinear Sciences and Applications","volume":"77 1","pages":"364-377"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the symmetric positive solutions of nonlinear fourth order ordinary differential equations with four-point boundary value conditions: a fixed point theory approach\",\"authors\":\"M. Asaduzzaman, Md. Zulfikar Ali\",\"doi\":\"10.22436/jnsa.013.06.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to investigate the existence of symmetric positive solutions of the following nonlinear fourth order system of ordinary differential equations{ −u(4)(t) = f(t, v), −v(4)(t) = g(t, u), t ∈ [0, 1], with the four-point boundary value conditions { u(t) = u(1 − t), u′′′(0) − u′′′(1) = u(t1) + u(t2), v(t) = v(1 − t), v′′′(0) − v′′′(1) = v(t1) + v(t2), 0 < t1 < t2 < 1. By applying Krasnoselskii’s fixed point theorem and under suitable conditions, we establish the existence of at least one or at least two symmetric positive solutions of the above mentioned fourth order four-point boundary value problem in cone. Some particular examples are provided to support the analytic proof.\",\"PeriodicalId\":22770,\"journal\":{\"name\":\"The Journal of Nonlinear Sciences and Applications\",\"volume\":\"77 1\",\"pages\":\"364-377\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Nonlinear Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/jnsa.013.06.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/jnsa.013.06.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是研究下列非线性四阶常微分方程组{- u(4)(t) = f(t, v), - v(4)(t) = g(t, u), t∈[0,1],具有四点边值条件{u(t) = u(1 - t), u ' ' (0) - u ' ' (1) = u(t1) + u(t2), v(t) = v(1 - t), v ' ' (0) - v ' ' (1) = v(t1) + v(t2), 0 < t1 < t2 < 1的对称正解的存在性。利用Krasnoselskii不动点定理,在适当的条件下,建立了上述四阶四点边值问题的至少一个或至少两个对称正解的存在性。给出了一些具体的例子来支持解析证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the symmetric positive solutions of nonlinear fourth order ordinary differential equations with four-point boundary value conditions: a fixed point theory approach
The purpose of this paper is to investigate the existence of symmetric positive solutions of the following nonlinear fourth order system of ordinary differential equations{ −u(4)(t) = f(t, v), −v(4)(t) = g(t, u), t ∈ [0, 1], with the four-point boundary value conditions { u(t) = u(1 − t), u′′′(0) − u′′′(1) = u(t1) + u(t2), v(t) = v(1 − t), v′′′(0) − v′′′(1) = v(t1) + v(t2), 0 < t1 < t2 < 1. By applying Krasnoselskii’s fixed point theorem and under suitable conditions, we establish the existence of at least one or at least two symmetric positive solutions of the above mentioned fourth order four-point boundary value problem in cone. Some particular examples are provided to support the analytic proof.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信