将偏序分解成链

Kenneth P. Bogart
{"title":"将偏序分解成链","authors":"Kenneth P. Bogart","doi":"10.1016/S0021-9800(70)80059-X","DOIUrl":null,"url":null,"abstract":"<div><p>Dilworth's theorem gives the number of chains whose union is a given partially ordered set in terms of intrinsic properties of the partial ordering. This paper uses Dilworth's theorem to find the number of chains needed to uniquely determine a given partially ordered set in terms of intrinsic properties of the partial ordering. If <em>a</em> covers <em>b</em> and <em>c</em> covers <em>d</em>, then (<em>a, b</em>) and (<em>c, d</em>) are <em>incomparable covers</em> if either <em>a</em> or <em>b</em> is incomparable with either <em>c</em> or <em>d</em>. We prove that the number of chains whose transtitive closure is a given partial ordering is the largest number of elements in any set of incomparable covers plus the number of isolated elements of the partially ordered set.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"9 1","pages":"Pages 97-99"},"PeriodicalIF":0.0000,"publicationDate":"1970-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80059-X","citationCount":"3","resultStr":"{\"title\":\"Decomposing partial orderings into chains\",\"authors\":\"Kenneth P. Bogart\",\"doi\":\"10.1016/S0021-9800(70)80059-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dilworth's theorem gives the number of chains whose union is a given partially ordered set in terms of intrinsic properties of the partial ordering. This paper uses Dilworth's theorem to find the number of chains needed to uniquely determine a given partially ordered set in terms of intrinsic properties of the partial ordering. If <em>a</em> covers <em>b</em> and <em>c</em> covers <em>d</em>, then (<em>a, b</em>) and (<em>c, d</em>) are <em>incomparable covers</em> if either <em>a</em> or <em>b</em> is incomparable with either <em>c</em> or <em>d</em>. We prove that the number of chains whose transtitive closure is a given partial ordering is the largest number of elements in any set of incomparable covers plus the number of isolated elements of the partially ordered set.</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"9 1\",\"pages\":\"Pages 97-99\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80059-X\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002198007080059X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002198007080059X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Dilworth定理用偏序的固有性质给出了其并集是给定偏序集的链的个数。本文利用Dilworth定理,根据偏序的固有性质,求出了唯一确定给定偏序集合所需要的链的个数。如果a覆盖b, c覆盖d,则(a, b)和(c, d)是不可比较的覆盖,如果a或b与c或d都不可比较。我们证明了传递闭包是给定偏序的链的数目是任何不可比较覆盖集合中元素的最大数目加上部分有序集合中孤立元素的数目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposing partial orderings into chains

Dilworth's theorem gives the number of chains whose union is a given partially ordered set in terms of intrinsic properties of the partial ordering. This paper uses Dilworth's theorem to find the number of chains needed to uniquely determine a given partially ordered set in terms of intrinsic properties of the partial ordering. If a covers b and c covers d, then (a, b) and (c, d) are incomparable covers if either a or b is incomparable with either c or d. We prove that the number of chains whose transtitive closure is a given partial ordering is the largest number of elements in any set of incomparable covers plus the number of isolated elements of the partially ordered set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信