{"title":"萨特比流体在等温前滚涂布过程中的流变性影响的理论研究","authors":"Alia Hanif, Z. Abbas, S. Khaliq","doi":"10.1177/87560879221111820","DOIUrl":null,"url":null,"abstract":"In this paper, the incompressible and isothermal flow of Sutterby fluid is investigated during the forward roll coating process. The mass and momentum equations are non-dimensionalized and simplified using lubrication approximation theory (LAT). Perturbative results are obtained for the velocity, pressure gradient, flow rate, and shear stress, while coating thickness, maximum pressure, separating point, roll separating force and roll-transmitted power are found by Simpson’s 3/8 rule. Outcomes exhibit that velocity, pressure gradient and coating thickness are substantially influenced by the non-Newtonian fluid parameter, which may increase the coating efficiency. Also, power input and roll separating force is directly proportional to the non-Newtonian parameter.","PeriodicalId":16823,"journal":{"name":"Journal of Plastic Film & Sheeting","volume":"56 1","pages":"115 - 133"},"PeriodicalIF":2.1000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Rheological impact of Sutterby fluid in isothermal forward roll coating process: a theoretical study\",\"authors\":\"Alia Hanif, Z. Abbas, S. Khaliq\",\"doi\":\"10.1177/87560879221111820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the incompressible and isothermal flow of Sutterby fluid is investigated during the forward roll coating process. The mass and momentum equations are non-dimensionalized and simplified using lubrication approximation theory (LAT). Perturbative results are obtained for the velocity, pressure gradient, flow rate, and shear stress, while coating thickness, maximum pressure, separating point, roll separating force and roll-transmitted power are found by Simpson’s 3/8 rule. Outcomes exhibit that velocity, pressure gradient and coating thickness are substantially influenced by the non-Newtonian fluid parameter, which may increase the coating efficiency. Also, power input and roll separating force is directly proportional to the non-Newtonian parameter.\",\"PeriodicalId\":16823,\"journal\":{\"name\":\"Journal of Plastic Film & Sheeting\",\"volume\":\"56 1\",\"pages\":\"115 - 133\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plastic Film & Sheeting\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/87560879221111820\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plastic Film & Sheeting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/87560879221111820","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Rheological impact of Sutterby fluid in isothermal forward roll coating process: a theoretical study
In this paper, the incompressible and isothermal flow of Sutterby fluid is investigated during the forward roll coating process. The mass and momentum equations are non-dimensionalized and simplified using lubrication approximation theory (LAT). Perturbative results are obtained for the velocity, pressure gradient, flow rate, and shear stress, while coating thickness, maximum pressure, separating point, roll separating force and roll-transmitted power are found by Simpson’s 3/8 rule. Outcomes exhibit that velocity, pressure gradient and coating thickness are substantially influenced by the non-Newtonian fluid parameter, which may increase the coating efficiency. Also, power input and roll separating force is directly proportional to the non-Newtonian parameter.
期刊介绍:
The Journal of Plastic Film and Sheeting improves communication concerning plastic film and sheeting with major emphasis on the propogation of knowledge which will serve to advance the science and technology of these products and thus better serve industry and the ultimate consumer. The journal reports on the wide variety of advances that are rapidly taking place in the technology of plastic film and sheeting. This journal is a member of the Committee on Publication Ethics (COPE).