二氧化钛-氧化石墨烯基复合材料光催化剂的研究进展

Katarina Stepic, Radomir Ljupković, Jovana D. Ickovski, A. Zarubica
{"title":"二氧化钛-氧化石墨烯基复合材料光催化剂的研究进展","authors":"Katarina Stepic, Radomir Ljupković, Jovana D. Ickovski, A. Zarubica","doi":"10.5937/savteh2102051s","DOIUrl":null,"url":null,"abstract":"New and effective methods of water purification are necessary to minimize pollution. Many methods have been used in wastewater treatment, but sorption is considered as an easy and economic process. The efficiency of any sorption process mainly depends on the physicochemical properties of the used adsorbent. Since photocatalysts can initiate reactions of decomposition organic contaminants under ultraviolet or sunlight irradiation without using chemicals or producing chemical wastes, photocatalytic reactions are considered a sustainable way to remove a variety of environmental pollutants. Ultraviolet water purification became the most effective method of water disinfection and purification. Heterogeneous semiconductor photocatalysts have recently emerged as an efficient material for purifying water. The crystal structure is crucial for photocatalytic activity and efficiency of semiconductors, thus optimal parameters must be provided during the preparation of photocatalysts. To overcome problems with semiconductors usage, the use of co-catalysts and photocatalyst carriers is one of the solutions. Recently, much emphasis has been placed on using graphene oxide (GO) supported semiconductor photocatalysts. In this paper, a short review of composites of titanium dioxide and graphene oxide-based materials is given.","PeriodicalId":7216,"journal":{"name":"Advanced Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A short review of titania-graphene oxide based composites as a photocatalysts\",\"authors\":\"Katarina Stepic, Radomir Ljupković, Jovana D. Ickovski, A. Zarubica\",\"doi\":\"10.5937/savteh2102051s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New and effective methods of water purification are necessary to minimize pollution. Many methods have been used in wastewater treatment, but sorption is considered as an easy and economic process. The efficiency of any sorption process mainly depends on the physicochemical properties of the used adsorbent. Since photocatalysts can initiate reactions of decomposition organic contaminants under ultraviolet or sunlight irradiation without using chemicals or producing chemical wastes, photocatalytic reactions are considered a sustainable way to remove a variety of environmental pollutants. Ultraviolet water purification became the most effective method of water disinfection and purification. Heterogeneous semiconductor photocatalysts have recently emerged as an efficient material for purifying water. The crystal structure is crucial for photocatalytic activity and efficiency of semiconductors, thus optimal parameters must be provided during the preparation of photocatalysts. To overcome problems with semiconductors usage, the use of co-catalysts and photocatalyst carriers is one of the solutions. Recently, much emphasis has been placed on using graphene oxide (GO) supported semiconductor photocatalysts. In this paper, a short review of composites of titanium dioxide and graphene oxide-based materials is given.\",\"PeriodicalId\":7216,\"journal\":{\"name\":\"Advanced Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/savteh2102051s\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/savteh2102051s","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

新的和有效的水净化方法是必要的,以尽量减少污染。废水处理的方法有很多,但吸附被认为是一种简单、经济的处理方法。任何吸附过程的效率主要取决于所用吸附剂的物理化学性质。由于光催化剂可以在紫外线或日光照射下引发分解有机污染物的反应,而不使用化学品或产生化学废物,因此光催化反应被认为是一种可持续去除多种环境污染物的方法。紫外线净水成为最有效的水消毒净化方法。非均相半导体光催化剂是近年来发展起来的一种高效的水净化材料。晶体结构对半导体的光催化活性和效率至关重要,因此在制备光催化剂时必须提供最佳的参数。为了克服半导体的使用问题,使用共催化剂和光催化剂载体是解决方案之一。近年来,使用氧化石墨烯(GO)负载的半导体光催化剂受到了广泛的关注。本文综述了二氧化钛与氧化石墨烯基复合材料的研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A short review of titania-graphene oxide based composites as a photocatalysts
New and effective methods of water purification are necessary to minimize pollution. Many methods have been used in wastewater treatment, but sorption is considered as an easy and economic process. The efficiency of any sorption process mainly depends on the physicochemical properties of the used adsorbent. Since photocatalysts can initiate reactions of decomposition organic contaminants under ultraviolet or sunlight irradiation without using chemicals or producing chemical wastes, photocatalytic reactions are considered a sustainable way to remove a variety of environmental pollutants. Ultraviolet water purification became the most effective method of water disinfection and purification. Heterogeneous semiconductor photocatalysts have recently emerged as an efficient material for purifying water. The crystal structure is crucial for photocatalytic activity and efficiency of semiconductors, thus optimal parameters must be provided during the preparation of photocatalysts. To overcome problems with semiconductors usage, the use of co-catalysts and photocatalyst carriers is one of the solutions. Recently, much emphasis has been placed on using graphene oxide (GO) supported semiconductor photocatalysts. In this paper, a short review of composites of titanium dioxide and graphene oxide-based materials is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信