{"title":"基于Kronecker和Khatri-Rao结构因子的欠定张量分解中抽样的作用","authors":"Mehmet Can Hücümenoğlu, P. Pal","doi":"10.1109/IEEECONF44664.2019.9048911","DOIUrl":null,"url":null,"abstract":"This paper introduces the problem of learning Khatri- Rao structured dictionaries for tensor data, which is inspired from the CANDECOMP/PARAFAC decomposition of tensors. Unlike Kronecker-structured dictionaries which have recently been shown to be locally identifiable under a separable sparsity assumption on coefficient vectors, we show that Khatri-Rao dic tionaries are globally identifiable for arbitrary sparsity patterns. We provide the expected sample complexity to learn Khatri-Rao structured dictionaries and conduct numerical experiments which agree with the theoretical results.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"53 1","pages":"442-446"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Role of Sampling in Underdetermined Tensor Decomposition with Kronecker and Khatri-Rao Structured Factors\",\"authors\":\"Mehmet Can Hücümenoğlu, P. Pal\",\"doi\":\"10.1109/IEEECONF44664.2019.9048911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the problem of learning Khatri- Rao structured dictionaries for tensor data, which is inspired from the CANDECOMP/PARAFAC decomposition of tensors. Unlike Kronecker-structured dictionaries which have recently been shown to be locally identifiable under a separable sparsity assumption on coefficient vectors, we show that Khatri-Rao dic tionaries are globally identifiable for arbitrary sparsity patterns. We provide the expected sample complexity to learn Khatri-Rao structured dictionaries and conduct numerical experiments which agree with the theoretical results.\",\"PeriodicalId\":6684,\"journal\":{\"name\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"53 1\",\"pages\":\"442-446\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF44664.2019.9048911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Role of Sampling in Underdetermined Tensor Decomposition with Kronecker and Khatri-Rao Structured Factors
This paper introduces the problem of learning Khatri- Rao structured dictionaries for tensor data, which is inspired from the CANDECOMP/PARAFAC decomposition of tensors. Unlike Kronecker-structured dictionaries which have recently been shown to be locally identifiable under a separable sparsity assumption on coefficient vectors, we show that Khatri-Rao dic tionaries are globally identifiable for arbitrary sparsity patterns. We provide the expected sample complexity to learn Khatri-Rao structured dictionaries and conduct numerical experiments which agree with the theoretical results.