A. A. Darhuber, J.P. Valentino, S. Troian, S. Wagner
{"title":"可编程微加热器阵列在化学图案表面上的液滴热毛细管驱动","authors":"A. A. Darhuber, J.P. Valentino, S. Troian, S. Wagner","doi":"10.1109/JMEMS.2003.820267","DOIUrl":null,"url":null,"abstract":"We have designed a microfluidic device for the actuation of liquid droplets or continuous streams on a solid surface by means of integrated microheater arrays. The microheaters provide control of the surface temperature distribution with high spatial resolution. These temperature gradients locally alter the surface tension along droplets and thin films thus propelling the liquid toward the colder regions. In combination with liquophilic and liquophobic chemical surface patterning, this device can be used as a logistic platform for the parallel and automated routing, mixing and reacting of a multitude of liquid samples, including alkanes, poly(ethylene glycol) and water.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"9 1","pages":"873-879"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"217","resultStr":"{\"title\":\"Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays\",\"authors\":\"A. A. Darhuber, J.P. Valentino, S. Troian, S. Wagner\",\"doi\":\"10.1109/JMEMS.2003.820267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have designed a microfluidic device for the actuation of liquid droplets or continuous streams on a solid surface by means of integrated microheater arrays. The microheaters provide control of the surface temperature distribution with high spatial resolution. These temperature gradients locally alter the surface tension along droplets and thin films thus propelling the liquid toward the colder regions. In combination with liquophilic and liquophobic chemical surface patterning, this device can be used as a logistic platform for the parallel and automated routing, mixing and reacting of a multitude of liquid samples, including alkanes, poly(ethylene glycol) and water.\",\"PeriodicalId\":13438,\"journal\":{\"name\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"volume\":\"9 1\",\"pages\":\"873-879\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"217\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JMEMS.2003.820267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE\\/ASME Journal of Microelectromechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JMEMS.2003.820267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays
We have designed a microfluidic device for the actuation of liquid droplets or continuous streams on a solid surface by means of integrated microheater arrays. The microheaters provide control of the surface temperature distribution with high spatial resolution. These temperature gradients locally alter the surface tension along droplets and thin films thus propelling the liquid toward the colder regions. In combination with liquophilic and liquophobic chemical surface patterning, this device can be used as a logistic platform for the parallel and automated routing, mixing and reacting of a multitude of liquid samples, including alkanes, poly(ethylene glycol) and water.