手写体数字识别系统通过OCON神经网络通过剪枝选择性更新

Q4 Computer Science
Shuh-Chuan Tsay, Peir-Ren Hong, Bin-Chang Chieu
{"title":"手写体数字识别系统通过OCON神经网络通过剪枝选择性更新","authors":"Shuh-Chuan Tsay, Peir-Ren Hong, Bin-Chang Chieu","doi":"10.1109/ICPR.1992.201862","DOIUrl":null,"url":null,"abstract":"Performs the handwritten digits recognition using the OCON (one-class-one-net) network and the PSU (pruning selective update) training algorithm. The main feature of the architecture of OCON network is that the entire network is composed of single output multi-layer perceptron and each of the subnets represents one class. The PSU training algorithm defined on the new cost function is designed to speed up the training procedure. It is shown that an OCON network with the new training algorithm outperforms the conventional back-propagation algorithm.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Handwritten digits recognition system via OCON neural network by pruning selective update\",\"authors\":\"Shuh-Chuan Tsay, Peir-Ren Hong, Bin-Chang Chieu\",\"doi\":\"10.1109/ICPR.1992.201862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performs the handwritten digits recognition using the OCON (one-class-one-net) network and the PSU (pruning selective update) training algorithm. The main feature of the architecture of OCON network is that the entire network is composed of single output multi-layer perceptron and each of the subnets represents one class. The PSU training algorithm defined on the new cost function is designed to speed up the training procedure. It is shown that an OCON network with the new training algorithm outperforms the conventional back-propagation algorithm.<<ETX>>\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1992.201862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 6

摘要

使用OCON (one-class-one-net)网络和PSU (pruning selective update)训练算法进行手写数字识别。OCON网络结构的主要特点是整个网络由单输出多层感知机组成,每个子网代表一个类。设计了基于新代价函数的PSU训练算法,提高了训练速度。结果表明,采用新训练算法的OCON网络优于传统的反向传播算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handwritten digits recognition system via OCON neural network by pruning selective update
Performs the handwritten digits recognition using the OCON (one-class-one-net) network and the PSU (pruning selective update) training algorithm. The main feature of the architecture of OCON network is that the entire network is composed of single output multi-layer perceptron and each of the subnets represents one class. The PSU training algorithm defined on the new cost function is designed to speed up the training procedure. It is shown that an OCON network with the new training algorithm outperforms the conventional back-propagation algorithm.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信