{"title":"手写体数字识别系统通过OCON神经网络通过剪枝选择性更新","authors":"Shuh-Chuan Tsay, Peir-Ren Hong, Bin-Chang Chieu","doi":"10.1109/ICPR.1992.201862","DOIUrl":null,"url":null,"abstract":"Performs the handwritten digits recognition using the OCON (one-class-one-net) network and the PSU (pruning selective update) training algorithm. The main feature of the architecture of OCON network is that the entire network is composed of single output multi-layer perceptron and each of the subnets represents one class. The PSU training algorithm defined on the new cost function is designed to speed up the training procedure. It is shown that an OCON network with the new training algorithm outperforms the conventional back-propagation algorithm.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"16 1","pages":"656-659"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Handwritten digits recognition system via OCON neural network by pruning selective update\",\"authors\":\"Shuh-Chuan Tsay, Peir-Ren Hong, Bin-Chang Chieu\",\"doi\":\"10.1109/ICPR.1992.201862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performs the handwritten digits recognition using the OCON (one-class-one-net) network and the PSU (pruning selective update) training algorithm. The main feature of the architecture of OCON network is that the entire network is composed of single output multi-layer perceptron and each of the subnets represents one class. The PSU training algorithm defined on the new cost function is designed to speed up the training procedure. It is shown that an OCON network with the new training algorithm outperforms the conventional back-propagation algorithm.<<ETX>>\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":\"16 1\",\"pages\":\"656-659\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1992.201862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Handwritten digits recognition system via OCON neural network by pruning selective update
Performs the handwritten digits recognition using the OCON (one-class-one-net) network and the PSU (pruning selective update) training algorithm. The main feature of the architecture of OCON network is that the entire network is composed of single output multi-layer perceptron and each of the subnets represents one class. The PSU training algorithm defined on the new cost function is designed to speed up the training procedure. It is shown that an OCON network with the new training algorithm outperforms the conventional back-propagation algorithm.<>