离焦立体图像的模糊感知视差估计

Ching-Hui Chen, Hui Zhou, T. Ahonen
{"title":"离焦立体图像的模糊感知视差估计","authors":"Ching-Hui Chen, Hui Zhou, T. Ahonen","doi":"10.1109/ICCV.2015.104","DOIUrl":null,"url":null,"abstract":"Defocus blur usually causes performance degradation in establishing the visual correspondence between stereo images. We propose a blur-aware disparity estimation method that is robust to the mismatch of focus in stereo images. The relative blur resulting from the mismatch of focus between stereo images is approximated as the difference of the square diameters of the blur kernels. Based on the defocus and stereo model, we propose the relative blur versus disparity (RBD) model that characterizes the relative blur as a second-order polynomial function of disparity. Our method alternates between RBD model update and disparity update in each iteration. The RBD model in return refines the disparity estimation by updating the matching cost and aggregation weight to compensate the mismatch of focus. Experiments using both synthesized and real datasets demonstrate the effectiveness of our proposed algorithm.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"14 1","pages":"855-863"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Blur-Aware Disparity Estimation from Defocus Stereo Images\",\"authors\":\"Ching-Hui Chen, Hui Zhou, T. Ahonen\",\"doi\":\"10.1109/ICCV.2015.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Defocus blur usually causes performance degradation in establishing the visual correspondence between stereo images. We propose a blur-aware disparity estimation method that is robust to the mismatch of focus in stereo images. The relative blur resulting from the mismatch of focus between stereo images is approximated as the difference of the square diameters of the blur kernels. Based on the defocus and stereo model, we propose the relative blur versus disparity (RBD) model that characterizes the relative blur as a second-order polynomial function of disparity. Our method alternates between RBD model update and disparity update in each iteration. The RBD model in return refines the disparity estimation by updating the matching cost and aggregation weight to compensate the mismatch of focus. Experiments using both synthesized and real datasets demonstrate the effectiveness of our proposed algorithm.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"14 1\",\"pages\":\"855-863\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

散焦模糊通常会导致在立体图像之间建立视觉一致性的性能下降。提出了一种对立体图像焦点不匹配具有鲁棒性的模糊感知视差估计方法。由立体图像之间焦点不匹配引起的相对模糊近似为模糊核的平方直径之差。在离焦和立体模型的基础上,提出了相对模糊-视差(RBD)模型,该模型将相对模糊表征为视差的二阶多项式函数。我们的方法在每次迭代中交替进行RBD模型更新和视差更新。RBD模型通过更新匹配代价和聚合权值来补偿焦点的不匹配,从而改进视差估计。在合成数据集和真实数据集上的实验证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blur-Aware Disparity Estimation from Defocus Stereo Images
Defocus blur usually causes performance degradation in establishing the visual correspondence between stereo images. We propose a blur-aware disparity estimation method that is robust to the mismatch of focus in stereo images. The relative blur resulting from the mismatch of focus between stereo images is approximated as the difference of the square diameters of the blur kernels. Based on the defocus and stereo model, we propose the relative blur versus disparity (RBD) model that characterizes the relative blur as a second-order polynomial function of disparity. Our method alternates between RBD model update and disparity update in each iteration. The RBD model in return refines the disparity estimation by updating the matching cost and aggregation weight to compensate the mismatch of focus. Experiments using both synthesized and real datasets demonstrate the effectiveness of our proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信