与肠外营养液配制过程演变相关的风险:使用“FMECA”方法

G. Dozias, J. Thiec, Gwenola Le Den, V. Cogulet
{"title":"与肠外营养液配制过程演变相关的风险:使用“FMECA”方法","authors":"G. Dozias, J. Thiec, Gwenola Le Den, V. Cogulet","doi":"10.1515/pthp-2020-0017","DOIUrl":null,"url":null,"abstract":"Abstract Objectives An audit of the practices of our compounding unit was performed in 2016: areas of improvement were proposed, such as the automatization of our process. An automated compounder was acquired (MediMixmulti® MF4120R). The aim of the study was to anticipate the risks of the new process, in order to improve its security and to support the professionals during this evolution of our compounding process. Methods The Failure Modes, Effects and Criticality Analysis (FMECA) method was carried out in order to detect potential failures brought by the automatization of parenteral nutrition (PN) manufacturing in the new process. The FMECA method included four steps that were divided into five work sessions of one and a half hour each over a period of two months. A working group made up of professionals involved in the PN production process was set up (pharmacists, pharmacy resident, manager and pharmaceutical technician). Results Fifty failure modes were determined by this analysis, of which 96% could have an impact on the patient, 90% on the health staff and 74% on the product. The FMECA shows that 18 failure modes have a tolerable or unacceptable CI (CI≥100) for which it is necessary to implement preventive measures as a priority. This work also made it possible to review the barrier measures already in place for the current process. Conclusions The risk analysis allowed us to analyze the failures of both the actual and the future manufacturing processes. Once the most critical failure modes were identified, specific recommendations were proposed and an improvement plan was established. First, the compounder needs to be fully qualified. Then, the quality manual of the PN process will be reviewed and updated. Once these steps are completed, the pharmacy professionals (pharmacists, pharmacy technicians) will be trained and the PN production will be performed using the automated compounder on a daily basis.","PeriodicalId":19802,"journal":{"name":"Pharmaceutical Technology in Hospital Pharmacy","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Risks associated with the evolution in the compounding process of parenteral nutrition solutions: use of the “FMECA” method\",\"authors\":\"G. Dozias, J. Thiec, Gwenola Le Den, V. Cogulet\",\"doi\":\"10.1515/pthp-2020-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objectives An audit of the practices of our compounding unit was performed in 2016: areas of improvement were proposed, such as the automatization of our process. An automated compounder was acquired (MediMixmulti® MF4120R). The aim of the study was to anticipate the risks of the new process, in order to improve its security and to support the professionals during this evolution of our compounding process. Methods The Failure Modes, Effects and Criticality Analysis (FMECA) method was carried out in order to detect potential failures brought by the automatization of parenteral nutrition (PN) manufacturing in the new process. The FMECA method included four steps that were divided into five work sessions of one and a half hour each over a period of two months. A working group made up of professionals involved in the PN production process was set up (pharmacists, pharmacy resident, manager and pharmaceutical technician). Results Fifty failure modes were determined by this analysis, of which 96% could have an impact on the patient, 90% on the health staff and 74% on the product. The FMECA shows that 18 failure modes have a tolerable or unacceptable CI (CI≥100) for which it is necessary to implement preventive measures as a priority. This work also made it possible to review the barrier measures already in place for the current process. Conclusions The risk analysis allowed us to analyze the failures of both the actual and the future manufacturing processes. Once the most critical failure modes were identified, specific recommendations were proposed and an improvement plan was established. First, the compounder needs to be fully qualified. Then, the quality manual of the PN process will be reviewed and updated. Once these steps are completed, the pharmacy professionals (pharmacists, pharmacy technicians) will be trained and the PN production will be performed using the automated compounder on a daily basis.\",\"PeriodicalId\":19802,\"journal\":{\"name\":\"Pharmaceutical Technology in Hospital Pharmacy\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Technology in Hospital Pharmacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/pthp-2020-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Technology in Hospital Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/pthp-2020-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

2016年对我们的配制部门进行了审核:提出了改进的领域,例如我们的工艺自动化。获得了一台自动复合仪(MediMixmulti®MF4120R)。这项研究的目的是预测新工艺的风险,以提高其安全性,并在我们的复合工艺的演变过程中为专业人员提供支持。方法采用失效模式、影响及临界性分析(FMECA)方法,对肠外营养(PN)生产自动化新工艺带来的潜在故障进行检测。FMECA方法包括四个步骤,分为五个工作阶段,每个阶段一个半小时,为期两个月。成立了一个由参与PN生产过程的专业人员组成的工作组(药剂师、药房住客、管理人员和制药技术人员)。结果通过分析确定了50种失效模式,其中96%对患者有影响,90%对医护人员有影响,74%对产品有影响。FMECA表明,18种失效模式具有可容忍或不可接受的CI (CI≥100),需要优先实施预防措施。这项工作还使审查目前进程中已经存在的障碍措施成为可能。结论风险分析使我们能够分析实际和未来制造过程的失效。一旦确定了最关键的失效模式,就会提出具体的建议,并制定改进计划。首先,复合体需要完全合格。然后,审核和更新PN工艺的质量手册。一旦这些步骤完成,将对药学专业人员(药剂师、药学技术人员)进行培训,并每天使用自动合成机进行PN生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Risks associated with the evolution in the compounding process of parenteral nutrition solutions: use of the “FMECA” method
Abstract Objectives An audit of the practices of our compounding unit was performed in 2016: areas of improvement were proposed, such as the automatization of our process. An automated compounder was acquired (MediMixmulti® MF4120R). The aim of the study was to anticipate the risks of the new process, in order to improve its security and to support the professionals during this evolution of our compounding process. Methods The Failure Modes, Effects and Criticality Analysis (FMECA) method was carried out in order to detect potential failures brought by the automatization of parenteral nutrition (PN) manufacturing in the new process. The FMECA method included four steps that were divided into five work sessions of one and a half hour each over a period of two months. A working group made up of professionals involved in the PN production process was set up (pharmacists, pharmacy resident, manager and pharmaceutical technician). Results Fifty failure modes were determined by this analysis, of which 96% could have an impact on the patient, 90% on the health staff and 74% on the product. The FMECA shows that 18 failure modes have a tolerable or unacceptable CI (CI≥100) for which it is necessary to implement preventive measures as a priority. This work also made it possible to review the barrier measures already in place for the current process. Conclusions The risk analysis allowed us to analyze the failures of both the actual and the future manufacturing processes. Once the most critical failure modes were identified, specific recommendations were proposed and an improvement plan was established. First, the compounder needs to be fully qualified. Then, the quality manual of the PN process will be reviewed and updated. Once these steps are completed, the pharmacy professionals (pharmacists, pharmacy technicians) will be trained and the PN production will be performed using the automated compounder on a daily basis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信