{"title":"g -量子位理论替代传统的缠结张量积解释","authors":"A. Soiguine","doi":"10.30560/ijas.v6n1p1","DOIUrl":null,"url":null,"abstract":"Quantum computing rests upon two theoretical pillars: entanglement and superposition. But some physicists say that this is a very shaky foundation and quantum computing success will have to be based on a different theoretical foundation. The g-qubit theory supports this point of view. Current article is the second one of the two and about the entanglement. It gives different, more physically feasible, not mysterious, explanation of what the entanglement is. The suggested formalism demonstrates that the core of future quantum computing should not be in entanglement which only formally follows in conventional quantum mechanics from representation of the many particle states as tensor products of individual states. The core of quantum computing scheme should be in manipulation and transferring of wave functions on as operators acting on observables and formulated in terms of geometrical algebra. In this way quantum computer will be a kind of analog computer keeping and processing information by sets of objects possessing infinite number of degrees of freedom, contrary to the two value bits or two-dimensional Hilbert space elements, qubits.","PeriodicalId":13778,"journal":{"name":"International Journal of Applied Science and Engineering","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The G-Qubit Theory Alternative to Conventional Tensor-Product Explanation of Entanglement\",\"authors\":\"A. Soiguine\",\"doi\":\"10.30560/ijas.v6n1p1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computing rests upon two theoretical pillars: entanglement and superposition. But some physicists say that this is a very shaky foundation and quantum computing success will have to be based on a different theoretical foundation. The g-qubit theory supports this point of view. Current article is the second one of the two and about the entanglement. It gives different, more physically feasible, not mysterious, explanation of what the entanglement is. The suggested formalism demonstrates that the core of future quantum computing should not be in entanglement which only formally follows in conventional quantum mechanics from representation of the many particle states as tensor products of individual states. The core of quantum computing scheme should be in manipulation and transferring of wave functions on as operators acting on observables and formulated in terms of geometrical algebra. In this way quantum computer will be a kind of analog computer keeping and processing information by sets of objects possessing infinite number of degrees of freedom, contrary to the two value bits or two-dimensional Hilbert space elements, qubits.\",\"PeriodicalId\":13778,\"journal\":{\"name\":\"International Journal of Applied Science and Engineering\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30560/ijas.v6n1p1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30560/ijas.v6n1p1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The G-Qubit Theory Alternative to Conventional Tensor-Product Explanation of Entanglement
Quantum computing rests upon two theoretical pillars: entanglement and superposition. But some physicists say that this is a very shaky foundation and quantum computing success will have to be based on a different theoretical foundation. The g-qubit theory supports this point of view. Current article is the second one of the two and about the entanglement. It gives different, more physically feasible, not mysterious, explanation of what the entanglement is. The suggested formalism demonstrates that the core of future quantum computing should not be in entanglement which only formally follows in conventional quantum mechanics from representation of the many particle states as tensor products of individual states. The core of quantum computing scheme should be in manipulation and transferring of wave functions on as operators acting on observables and formulated in terms of geometrical algebra. In this way quantum computer will be a kind of analog computer keeping and processing information by sets of objects possessing infinite number of degrees of freedom, contrary to the two value bits or two-dimensional Hilbert space elements, qubits.
期刊介绍:
IJASE is a journal which publishes original articles on research and development in the fields of applied science and engineering. Topics of interest include, but are not limited to: - Applied mathematics - Biochemical engineering - Chemical engineering - Civil engineering - Computer engineering and software - Electrical/electronic engineering - Environmental engineering - Industrial engineering and ergonomics - Mechanical engineering.