利用UNet和迁移学习增强遥感影像的建筑物提取

Q2 Computer Science
Smail Ait El Asri, Ismail Negabi, Samir El Adib, N. Raissouni
{"title":"利用UNet和迁移学习增强遥感影像的建筑物提取","authors":"Smail Ait El Asri, Ismail Negabi, Samir El Adib, N. Raissouni","doi":"10.1080/1206212X.2023.2219117","DOIUrl":null,"url":null,"abstract":"Performing accurate extraction of buildings from remote sensing (RS) images is a crucial process with widespread applications in urban planning, disaster management, and urban monitoring. However, this task remains challenging due to the diversity and complexity of building shapes, sizes, and textures, as well as variations in lighting and weather conditions. These difficulties motivate our research to propose an improved approach for building extraction using UNet and transfer learning to address these challenges. In this work, we tested seven different backbone architectures within the UNet encoder and found that combining UNet with ResNet101 or ResNet152 yielded the best results. Based on these findings, we combined the superior performance of these base models to create a novel architecture, which achieved significant improvements over previous methods. Specifically, our method achieved a 1.33% increase in Intersection over Union (IoU) compared to the baseline UNet model. Furthermore, it demonstrated a superior performance with a 1.21% increase in IoU over UNet-ResNet101 and a 1.60% increase in IoU over UNet-ResNet152. We evaluated our proposed approach on the INRIA Aerial Image dataset and demonstrated its superiority. Our research addresses a critical need for accurate building extraction from RS images and overcomes the challenges posed by diverse building characteristics.","PeriodicalId":39673,"journal":{"name":"International Journal of Computers and Applications","volume":"442 1","pages":"413 - 419"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing building extraction from remote sensing images through UNet and transfer learning\",\"authors\":\"Smail Ait El Asri, Ismail Negabi, Samir El Adib, N. Raissouni\",\"doi\":\"10.1080/1206212X.2023.2219117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performing accurate extraction of buildings from remote sensing (RS) images is a crucial process with widespread applications in urban planning, disaster management, and urban monitoring. However, this task remains challenging due to the diversity and complexity of building shapes, sizes, and textures, as well as variations in lighting and weather conditions. These difficulties motivate our research to propose an improved approach for building extraction using UNet and transfer learning to address these challenges. In this work, we tested seven different backbone architectures within the UNet encoder and found that combining UNet with ResNet101 or ResNet152 yielded the best results. Based on these findings, we combined the superior performance of these base models to create a novel architecture, which achieved significant improvements over previous methods. Specifically, our method achieved a 1.33% increase in Intersection over Union (IoU) compared to the baseline UNet model. Furthermore, it demonstrated a superior performance with a 1.21% increase in IoU over UNet-ResNet101 and a 1.60% increase in IoU over UNet-ResNet152. We evaluated our proposed approach on the INRIA Aerial Image dataset and demonstrated its superiority. Our research addresses a critical need for accurate building extraction from RS images and overcomes the challenges posed by diverse building characteristics.\",\"PeriodicalId\":39673,\"journal\":{\"name\":\"International Journal of Computers and Applications\",\"volume\":\"442 1\",\"pages\":\"413 - 419\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1206212X.2023.2219117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1206212X.2023.2219117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

从遥感影像中准确提取建筑物在城市规划、灾害管理和城市监测等领域有着广泛的应用。然而,由于建筑形状、大小和纹理的多样性和复杂性,以及照明和天气条件的变化,这项任务仍然具有挑战性。这些困难促使我们的研究提出了一种改进的方法,使用UNet和迁移学习来解决这些挑战。在这项工作中,我们在UNet编码器中测试了七种不同的骨干架构,发现将UNet与ResNet101或ResNet152结合使用产生了最好的结果。基于这些发现,我们结合了这些基本模型的优越性能来创建一个新的体系结构,它比以前的方法取得了显著的改进。具体来说,与基线UNet模型相比,我们的方法实现了1.33%的交叉交叉(IoU)增加。此外,与UNet-ResNet101相比,IoU增加了1.21%,与UNet-ResNet152相比,IoU增加了1.60%,表现出了优越的性能。我们在INRIA航空图像数据集上对该方法进行了评估,并证明了它的优越性。我们的研究解决了从RS图像中准确提取建筑物的关键需求,并克服了不同建筑特征带来的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing building extraction from remote sensing images through UNet and transfer learning
Performing accurate extraction of buildings from remote sensing (RS) images is a crucial process with widespread applications in urban planning, disaster management, and urban monitoring. However, this task remains challenging due to the diversity and complexity of building shapes, sizes, and textures, as well as variations in lighting and weather conditions. These difficulties motivate our research to propose an improved approach for building extraction using UNet and transfer learning to address these challenges. In this work, we tested seven different backbone architectures within the UNet encoder and found that combining UNet with ResNet101 or ResNet152 yielded the best results. Based on these findings, we combined the superior performance of these base models to create a novel architecture, which achieved significant improvements over previous methods. Specifically, our method achieved a 1.33% increase in Intersection over Union (IoU) compared to the baseline UNet model. Furthermore, it demonstrated a superior performance with a 1.21% increase in IoU over UNet-ResNet101 and a 1.60% increase in IoU over UNet-ResNet152. We evaluated our proposed approach on the INRIA Aerial Image dataset and demonstrated its superiority. Our research addresses a critical need for accurate building extraction from RS images and overcomes the challenges posed by diverse building characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computers and Applications
International Journal of Computers and Applications Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.70
自引率
0.00%
发文量
20
期刊介绍: The International Journal of Computers and Applications (IJCA) is a unique platform for publishing novel ideas, research outcomes and fundamental advances in all aspects of Computer Science, Computer Engineering, and Computer Applications. This is a peer-reviewed international journal with a vision to provide the academic and industrial community a platform for presenting original research ideas and applications. IJCA welcomes four special types of papers in addition to the regular research papers within its scope: (a) Papers for which all results could be easily reproducible. For such papers, the authors will be asked to upload "instructions for reproduction'''', possibly with the source codes or stable URLs (from where the codes could be downloaded). (b) Papers with negative results. For such papers, the experimental setting and negative results must be presented in detail. Also, why the negative results are important for the research community must be explained clearly. The rationale behind this kind of paper is that this would help researchers choose the correct approaches to solve problems and avoid the (already worked out) failed approaches. (c) Detailed report, case study and literature review articles about innovative software / hardware, new technology, high impact computer applications and future development with sufficient background and subject coverage. (d) Special issue papers focussing on a particular theme with significant importance or papers selected from a relevant conference with sufficient improvement and new material to differentiate from the papers published in a conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信