{"title":"平滑模糊下的时间一致终身投资组合选择","authors":"Luyang Yu, Liyuan Lin, Guohui Guan, Jingzhen Liu","doi":"10.3934/mcrf.2022023","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This paper studies the optimal consumption, life insurance and investment problem for an income earner with uncertain lifetime under smooth ambiguity model. We assume that risky assets have unknown market prices that result in ambiguity. The individual forms his belief, that is, the distribution of market prices, according to available information. His ambiguity attitude, which is similar to the risk attitude described by utility function <inline-formula><tex-math id=\"M1\">\\begin{document}$ U $\\end{document}</tex-math></inline-formula>, is represented by an ambiguity preference function <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\phi $\\end{document}</tex-math></inline-formula>. Under the smooth ambiguity model, the problem becomes time-inconsistent. We derive the extended Hamilton-Jacobi-Bellman (HJB) equation for the equilibrium value function and equilibrium strategy. Then, we obtain the explicit solution for the equilibrium strategy when both <inline-formula><tex-math id=\"M3\">\\begin{document}$ U $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\phi $\\end{document}</tex-math></inline-formula> are power functions. We find that a more risk- or ambiguity-averse individual will consume less, buy more life insurance and invest less. Moreover, we find that the Tobin-Markowitz separation theorem is no longer applicable when ambiguity attitude is taken into consideration. The investment strategy will change with the characteristics of the decision maker, such as risk attitude, ambiguity attitude and age.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time-consistent lifetime portfolio selection under smooth ambiguity\",\"authors\":\"Luyang Yu, Liyuan Lin, Guohui Guan, Jingzhen Liu\",\"doi\":\"10.3934/mcrf.2022023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>This paper studies the optimal consumption, life insurance and investment problem for an income earner with uncertain lifetime under smooth ambiguity model. We assume that risky assets have unknown market prices that result in ambiguity. The individual forms his belief, that is, the distribution of market prices, according to available information. His ambiguity attitude, which is similar to the risk attitude described by utility function <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ U $\\\\end{document}</tex-math></inline-formula>, is represented by an ambiguity preference function <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\phi $\\\\end{document}</tex-math></inline-formula>. Under the smooth ambiguity model, the problem becomes time-inconsistent. We derive the extended Hamilton-Jacobi-Bellman (HJB) equation for the equilibrium value function and equilibrium strategy. Then, we obtain the explicit solution for the equilibrium strategy when both <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ U $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\phi $\\\\end{document}</tex-math></inline-formula> are power functions. We find that a more risk- or ambiguity-averse individual will consume less, buy more life insurance and invest less. Moreover, we find that the Tobin-Markowitz separation theorem is no longer applicable when ambiguity attitude is taken into consideration. The investment strategy will change with the characteristics of the decision maker, such as risk attitude, ambiguity attitude and age.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2022023\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2022023","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
摘要
This paper studies the optimal consumption, life insurance and investment problem for an income earner with uncertain lifetime under smooth ambiguity model. We assume that risky assets have unknown market prices that result in ambiguity. The individual forms his belief, that is, the distribution of market prices, according to available information. His ambiguity attitude, which is similar to the risk attitude described by utility function \begin{document}$ U $\end{document}, is represented by an ambiguity preference function \begin{document}$ \phi $\end{document}. Under the smooth ambiguity model, the problem becomes time-inconsistent. We derive the extended Hamilton-Jacobi-Bellman (HJB) equation for the equilibrium value function and equilibrium strategy. Then, we obtain the explicit solution for the equilibrium strategy when both \begin{document}$ U $\end{document} and \begin{document}$ \phi $\end{document} are power functions. We find that a more risk- or ambiguity-averse individual will consume less, buy more life insurance and invest less. Moreover, we find that the Tobin-Markowitz separation theorem is no longer applicable when ambiguity attitude is taken into consideration. The investment strategy will change with the characteristics of the decision maker, such as risk attitude, ambiguity attitude and age.
Time-consistent lifetime portfolio selection under smooth ambiguity
This paper studies the optimal consumption, life insurance and investment problem for an income earner with uncertain lifetime under smooth ambiguity model. We assume that risky assets have unknown market prices that result in ambiguity. The individual forms his belief, that is, the distribution of market prices, according to available information. His ambiguity attitude, which is similar to the risk attitude described by utility function \begin{document}$ U $\end{document}, is represented by an ambiguity preference function \begin{document}$ \phi $\end{document}. Under the smooth ambiguity model, the problem becomes time-inconsistent. We derive the extended Hamilton-Jacobi-Bellman (HJB) equation for the equilibrium value function and equilibrium strategy. Then, we obtain the explicit solution for the equilibrium strategy when both \begin{document}$ U $\end{document} and \begin{document}$ \phi $\end{document} are power functions. We find that a more risk- or ambiguity-averse individual will consume less, buy more life insurance and invest less. Moreover, we find that the Tobin-Markowitz separation theorem is no longer applicable when ambiguity attitude is taken into consideration. The investment strategy will change with the characteristics of the decision maker, such as risk attitude, ambiguity attitude and age.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.