平滑模糊下的时间一致终身投资组合选择

IF 1 4区 数学 Q1 MATHEMATICS
Luyang Yu, Liyuan Lin, Guohui Guan, Jingzhen Liu
{"title":"平滑模糊下的时间一致终身投资组合选择","authors":"Luyang Yu, Liyuan Lin, Guohui Guan, Jingzhen Liu","doi":"10.3934/mcrf.2022023","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This paper studies the optimal consumption, life insurance and investment problem for an income earner with uncertain lifetime under smooth ambiguity model. We assume that risky assets have unknown market prices that result in ambiguity. The individual forms his belief, that is, the distribution of market prices, according to available information. His ambiguity attitude, which is similar to the risk attitude described by utility function <inline-formula><tex-math id=\"M1\">\\begin{document}$ U $\\end{document}</tex-math></inline-formula>, is represented by an ambiguity preference function <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\phi $\\end{document}</tex-math></inline-formula>. Under the smooth ambiguity model, the problem becomes time-inconsistent. We derive the extended Hamilton-Jacobi-Bellman (HJB) equation for the equilibrium value function and equilibrium strategy. Then, we obtain the explicit solution for the equilibrium strategy when both <inline-formula><tex-math id=\"M3\">\\begin{document}$ U $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\phi $\\end{document}</tex-math></inline-formula> are power functions. We find that a more risk- or ambiguity-averse individual will consume less, buy more life insurance and invest less. Moreover, we find that the Tobin-Markowitz separation theorem is no longer applicable when ambiguity attitude is taken into consideration. The investment strategy will change with the characteristics of the decision maker, such as risk attitude, ambiguity attitude and age.</p>","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":"121 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time-consistent lifetime portfolio selection under smooth ambiguity\",\"authors\":\"Luyang Yu, Liyuan Lin, Guohui Guan, Jingzhen Liu\",\"doi\":\"10.3934/mcrf.2022023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>This paper studies the optimal consumption, life insurance and investment problem for an income earner with uncertain lifetime under smooth ambiguity model. We assume that risky assets have unknown market prices that result in ambiguity. The individual forms his belief, that is, the distribution of market prices, according to available information. His ambiguity attitude, which is similar to the risk attitude described by utility function <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ U $\\\\end{document}</tex-math></inline-formula>, is represented by an ambiguity preference function <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\phi $\\\\end{document}</tex-math></inline-formula>. Under the smooth ambiguity model, the problem becomes time-inconsistent. We derive the extended Hamilton-Jacobi-Bellman (HJB) equation for the equilibrium value function and equilibrium strategy. Then, we obtain the explicit solution for the equilibrium strategy when both <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ U $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\phi $\\\\end{document}</tex-math></inline-formula> are power functions. We find that a more risk- or ambiguity-averse individual will consume less, buy more life insurance and invest less. Moreover, we find that the Tobin-Markowitz separation theorem is no longer applicable when ambiguity attitude is taken into consideration. The investment strategy will change with the characteristics of the decision maker, such as risk attitude, ambiguity attitude and age.</p>\",\"PeriodicalId\":48889,\"journal\":{\"name\":\"Mathematical Control and Related Fields\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2022023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2022023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

This paper studies the optimal consumption, life insurance and investment problem for an income earner with uncertain lifetime under smooth ambiguity model. We assume that risky assets have unknown market prices that result in ambiguity. The individual forms his belief, that is, the distribution of market prices, according to available information. His ambiguity attitude, which is similar to the risk attitude described by utility function \begin{document}$ U $\end{document}, is represented by an ambiguity preference function \begin{document}$ \phi $\end{document}. Under the smooth ambiguity model, the problem becomes time-inconsistent. We derive the extended Hamilton-Jacobi-Bellman (HJB) equation for the equilibrium value function and equilibrium strategy. Then, we obtain the explicit solution for the equilibrium strategy when both \begin{document}$ U $\end{document} and \begin{document}$ \phi $\end{document} are power functions. We find that a more risk- or ambiguity-averse individual will consume less, buy more life insurance and invest less. Moreover, we find that the Tobin-Markowitz separation theorem is no longer applicable when ambiguity attitude is taken into consideration. The investment strategy will change with the characteristics of the decision maker, such as risk attitude, ambiguity attitude and age.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-consistent lifetime portfolio selection under smooth ambiguity

This paper studies the optimal consumption, life insurance and investment problem for an income earner with uncertain lifetime under smooth ambiguity model. We assume that risky assets have unknown market prices that result in ambiguity. The individual forms his belief, that is, the distribution of market prices, according to available information. His ambiguity attitude, which is similar to the risk attitude described by utility function \begin{document}$ U $\end{document}, is represented by an ambiguity preference function \begin{document}$ \phi $\end{document}. Under the smooth ambiguity model, the problem becomes time-inconsistent. We derive the extended Hamilton-Jacobi-Bellman (HJB) equation for the equilibrium value function and equilibrium strategy. Then, we obtain the explicit solution for the equilibrium strategy when both \begin{document}$ U $\end{document} and \begin{document}$ \phi $\end{document} are power functions. We find that a more risk- or ambiguity-averse individual will consume less, buy more life insurance and invest less. Moreover, we find that the Tobin-Markowitz separation theorem is no longer applicable when ambiguity attitude is taken into consideration. The investment strategy will change with the characteristics of the decision maker, such as risk attitude, ambiguity attitude and age.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Control and Related Fields
Mathematical Control and Related Fields MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
8.30%
发文量
67
期刊介绍: MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信