Asma Rabiei, J. Mohammadzadeh-Habili, A. Chadee, Seyed Mohammad Ali Zomorodian, M. Jameel, H. Azamathulla
{"title":"直角三角形止水盆的性能:实验室研究","authors":"Asma Rabiei, J. Mohammadzadeh-Habili, A. Chadee, Seyed Mohammad Ali Zomorodian, M. Jameel, H. Azamathulla","doi":"10.2166/ws.2023.209","DOIUrl":null,"url":null,"abstract":"\n \n One of the most used hydraulic structures for energy dissipation of supercritical flow is the hydraulic jump stilling basin. From dimensional analysis, the sequent flow depth ratio of a hydraulic jump over the right-triangle basin is derived as a function of the inflow Froude number and relative length of the basin front. The proposed structure stabilized the hydraulic jump at the toe of the chute spillway and hydraulic jump characteristics were investigated for the Froude number ranging from 4.4 < F1 < 7. The results obtained from both numerical and experimental simulations yielded increased efficiency in the energy dissipation performance of this novel design. The modeling showed the formation of two large recirculation regions at the jump roller and jump bed at the beginning of the downstream channel, which resulted in intense energy dissipation in the right-triangle basin. The relative energy loss is approximately 37% higher for relative basin front lengths larger than three compared to the classic jump. Practitioners and academia on the usefulness of a right-triangle basin for hydraulic purposes and further experimental tests are needed to estimate the scalability and cost–benefit of this modified system for implementation.","PeriodicalId":17553,"journal":{"name":"Journal of Water Supply Research and Technology-aqua","volume":"87 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of a right-triangle stilling basin: a laboratory investigation\",\"authors\":\"Asma Rabiei, J. Mohammadzadeh-Habili, A. Chadee, Seyed Mohammad Ali Zomorodian, M. Jameel, H. Azamathulla\",\"doi\":\"10.2166/ws.2023.209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n One of the most used hydraulic structures for energy dissipation of supercritical flow is the hydraulic jump stilling basin. From dimensional analysis, the sequent flow depth ratio of a hydraulic jump over the right-triangle basin is derived as a function of the inflow Froude number and relative length of the basin front. The proposed structure stabilized the hydraulic jump at the toe of the chute spillway and hydraulic jump characteristics were investigated for the Froude number ranging from 4.4 < F1 < 7. The results obtained from both numerical and experimental simulations yielded increased efficiency in the energy dissipation performance of this novel design. The modeling showed the formation of two large recirculation regions at the jump roller and jump bed at the beginning of the downstream channel, which resulted in intense energy dissipation in the right-triangle basin. The relative energy loss is approximately 37% higher for relative basin front lengths larger than three compared to the classic jump. Practitioners and academia on the usefulness of a right-triangle basin for hydraulic purposes and further experimental tests are needed to estimate the scalability and cost–benefit of this modified system for implementation.\",\"PeriodicalId\":17553,\"journal\":{\"name\":\"Journal of Water Supply Research and Technology-aqua\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Supply Research and Technology-aqua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/ws.2023.209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply Research and Technology-aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
摘要
水力跃变消力池是目前应用最广泛的一种用于超临界水流消能的水工结构。通过量纲分析,导出了直角三角形盆地上水跳的序流深度比,它是入流弗劳德数和盆地前缘相对长度的函数。该结构稳定了滑槽溢洪道趾部的水力跳变,并对弗鲁德数4.4 < F1 < 7范围内的水力跳变特性进行了研究。数值模拟和实验模拟的结果表明,这种新设计的能量耗散性能提高了效率。模拟结果表明,在下游河道起始的跳轮和跳床处形成了两个大的再环流区,导致右三角盆地能量耗散强烈。相对盆地前缘长度大于3时,相对能量损失比典型跳跃高约37%。从业者和学术界需要对直角三角形盆地在水力方面的有用性进行研究,并进行进一步的实验测试,以评估这种改进系统的可扩展性和成本效益。
Performance of a right-triangle stilling basin: a laboratory investigation
One of the most used hydraulic structures for energy dissipation of supercritical flow is the hydraulic jump stilling basin. From dimensional analysis, the sequent flow depth ratio of a hydraulic jump over the right-triangle basin is derived as a function of the inflow Froude number and relative length of the basin front. The proposed structure stabilized the hydraulic jump at the toe of the chute spillway and hydraulic jump characteristics were investigated for the Froude number ranging from 4.4 < F1 < 7. The results obtained from both numerical and experimental simulations yielded increased efficiency in the energy dissipation performance of this novel design. The modeling showed the formation of two large recirculation regions at the jump roller and jump bed at the beginning of the downstream channel, which resulted in intense energy dissipation in the right-triangle basin. The relative energy loss is approximately 37% higher for relative basin front lengths larger than three compared to the classic jump. Practitioners and academia on the usefulness of a right-triangle basin for hydraulic purposes and further experimental tests are needed to estimate the scalability and cost–benefit of this modified system for implementation.
期刊介绍:
Journal of Water Supply: Research and Technology - Aqua publishes peer-reviewed scientific & technical, review, and practical/ operational papers dealing with research and development in water supply technology and management, including economics, training and public relations on a national and international level.