具有自由二阶导数的数值方法的推导

Y. Geum
{"title":"具有自由二阶导数的数值方法的推导","authors":"Y. Geum","doi":"10.46300/91019.2022.9.2","DOIUrl":null,"url":null,"abstract":"We have proposed the second-derivative-free numerical method and determined the control parameters to converge cubically. In addition, we have developed the order of convergence and the asymptotic error constant. Applying this iterative scheme to a variety of examples, numerical results have shown a successful asymptotic error constants with cubic convergence.","PeriodicalId":14365,"journal":{"name":"International journal of pure and applied mathematics","volume":"215 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivation of a Numerical Method with Free Second-order Derivatives\",\"authors\":\"Y. Geum\",\"doi\":\"10.46300/91019.2022.9.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have proposed the second-derivative-free numerical method and determined the control parameters to converge cubically. In addition, we have developed the order of convergence and the asymptotic error constant. Applying this iterative scheme to a variety of examples, numerical results have shown a successful asymptotic error constants with cubic convergence.\",\"PeriodicalId\":14365,\"journal\":{\"name\":\"International journal of pure and applied mathematics\",\"volume\":\"215 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of pure and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/91019.2022.9.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pure and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/91019.2022.9.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了无二阶导数的数值方法,并确定了控制参数以三次收敛。此外,我们还开发了收敛阶和渐近误差常数。将该迭代格式应用于各种实例,数值结果表明该格式具有三次收敛的渐近误差常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivation of a Numerical Method with Free Second-order Derivatives
We have proposed the second-derivative-free numerical method and determined the control parameters to converge cubically. In addition, we have developed the order of convergence and the asymptotic error constant. Applying this iterative scheme to a variety of examples, numerical results have shown a successful asymptotic error constants with cubic convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信