基于深度卷积神经网络的飞机检测

Q1 Computer Science
Xueyun Chen, Shiming Xiang, Cheng-Lin Liu, Chunhong Pan
{"title":"基于深度卷积神经网络的飞机检测","authors":"Xueyun Chen, Shiming Xiang, Cheng-Lin Liu, Chunhong Pan","doi":"10.2197/ipsjtcva.7.10","DOIUrl":null,"url":null,"abstract":"Features play crucial role in the performance of classifier for object detection from high-resolution remote sensing images. In this paper, we implemented two types of deep learning methods, deep convolutional neural network (DNN) and deep belief net (DBN), comparing their performances with that of the traditional methods (handcrafted features with a shallow classifier) in the task of aircraft detection. These methods learn robust features from a large set of training samples to obtain a better performance. The depth of their layers (>6 layers) grants them the ability to extract stable and large-scale features from the image. Our experiments show both deep learning methods reduce at least 40% of the false alarm rate of the traditional methods (HOG, LBP+SVM), and DNN performs a little better than DBN. We also fed some multi-preprocessed images simultaneously to one DNN model, and found that such a practice helps to improve the performance of the model obviously with no extra-computing burden adding.","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"5 1","pages":"10-17"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Aircraft Detection by Deep Convolutional Neural Networks\",\"authors\":\"Xueyun Chen, Shiming Xiang, Cheng-Lin Liu, Chunhong Pan\",\"doi\":\"10.2197/ipsjtcva.7.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Features play crucial role in the performance of classifier for object detection from high-resolution remote sensing images. In this paper, we implemented two types of deep learning methods, deep convolutional neural network (DNN) and deep belief net (DBN), comparing their performances with that of the traditional methods (handcrafted features with a shallow classifier) in the task of aircraft detection. These methods learn robust features from a large set of training samples to obtain a better performance. The depth of their layers (>6 layers) grants them the ability to extract stable and large-scale features from the image. Our experiments show both deep learning methods reduce at least 40% of the false alarm rate of the traditional methods (HOG, LBP+SVM), and DNN performs a little better than DBN. We also fed some multi-preprocessed images simultaneously to one DNN model, and found that such a practice helps to improve the performance of the model obviously with no extra-computing burden adding.\",\"PeriodicalId\":38957,\"journal\":{\"name\":\"IPSJ Transactions on Computer Vision and Applications\",\"volume\":\"5 1\",\"pages\":\"10-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Computer Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/ipsjtcva.7.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.7.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 18

摘要

特征对高分辨率遥感图像目标检测分类器的性能起着至关重要的作用。在本文中,我们实现了两种类型的深度学习方法,深度卷积神经网络(DNN)和深度信念网络(DBN),并将它们与传统方法(用浅分类器手工制作特征)在飞机检测任务中的性能进行了比较。这些方法从大量的训练样本中学习鲁棒特征,以获得更好的性能。层的深度(>6层)使他们能够从图像中提取稳定和大规模的特征。我们的实验表明,两种深度学习方法都比传统方法(HOG、LBP+SVM)至少降低了40%的虚警率,并且DNN的性能略好于DBN。我们还将一些预处理后的图像同时输入到一个DNN模型中,发现这种做法有助于明显提高模型的性能,并且没有增加额外的计算负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aircraft Detection by Deep Convolutional Neural Networks
Features play crucial role in the performance of classifier for object detection from high-resolution remote sensing images. In this paper, we implemented two types of deep learning methods, deep convolutional neural network (DNN) and deep belief net (DBN), comparing their performances with that of the traditional methods (handcrafted features with a shallow classifier) in the task of aircraft detection. These methods learn robust features from a large set of training samples to obtain a better performance. The depth of their layers (>6 layers) grants them the ability to extract stable and large-scale features from the image. Our experiments show both deep learning methods reduce at least 40% of the false alarm rate of the traditional methods (HOG, LBP+SVM), and DNN performs a little better than DBN. We also fed some multi-preprocessed images simultaneously to one DNN model, and found that such a practice helps to improve the performance of the model obviously with no extra-computing burden adding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IPSJ Transactions on Computer Vision and Applications
IPSJ Transactions on Computer Vision and Applications Computer Science-Computer Vision and Pattern Recognition
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信