实施适应性强的COVID-19利用和资源可视化引擎(CURVE),以描述医院内资源随时间的预测

Shih-Hsiung Chou, P. Turk, M. Kowalkowski, J. Kearns, J. Roberge, J. Priem, Y. Taylor, R. Burns, P. Palmer, A. McWilliams
{"title":"实施适应性强的COVID-19利用和资源可视化引擎(CURVE),以描述医院内资源随时间的预测","authors":"Shih-Hsiung Chou, P. Turk, M. Kowalkowski, J. Kearns, J. Roberge, J. Priem, Y. Taylor, R. Burns, P. Palmer, A. McWilliams","doi":"10.52933/jdssv.v2i7.19","DOIUrl":null,"url":null,"abstract":"We developed an interactive web-based, decision support application that can adapt to the rapid pace of change in region-specific pandemic related variables and knowledge, thereby providing timely, accurate insights to inform a large healthcare system’s proactive response to COVID-19 hospital resource planning. We designed the COVID-19 Utilization and Resource Visualization Engine (CURVE) app to be adaptable to real-time changes as the pandemic evolved, enabling decisions to be supported by contemporary local data and accurate predictive models. To demonstrate this flexibility, we sequentially implemented a Susceptible-Infected-Removed (SIR) model that incorporates social-distancing and imperfect detection (SIR-D2), an extended-state-space Bayesian SIR model (eSIR), and a time-series model (ARIMA). CURVE improves upon other pandemic forecasting solutions by providing adaptable decision support that generates locally calibrated forecasts aligned to health system specific data to guide COVID-19 pandemic planning.  The app additionally enables systematic monitoring of forecast model performance and realignment that keeps pace with the pandemic’s volatile spread and behavior. CURVE provides a flexible pandemic decision support framework that places the most accurate, locally relevant information in front of decision makers to enable health systems to be proactive and prepared.","PeriodicalId":93459,"journal":{"name":"Journal of data science, statistics, and visualisation","volume":"5 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of an Adaptable COVID-19 Utilization and Resource Visualization Engine (CURVE) to Depict In-Hospital Resource Forecasts Over Time\",\"authors\":\"Shih-Hsiung Chou, P. Turk, M. Kowalkowski, J. Kearns, J. Roberge, J. Priem, Y. Taylor, R. Burns, P. Palmer, A. McWilliams\",\"doi\":\"10.52933/jdssv.v2i7.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed an interactive web-based, decision support application that can adapt to the rapid pace of change in region-specific pandemic related variables and knowledge, thereby providing timely, accurate insights to inform a large healthcare system’s proactive response to COVID-19 hospital resource planning. We designed the COVID-19 Utilization and Resource Visualization Engine (CURVE) app to be adaptable to real-time changes as the pandemic evolved, enabling decisions to be supported by contemporary local data and accurate predictive models. To demonstrate this flexibility, we sequentially implemented a Susceptible-Infected-Removed (SIR) model that incorporates social-distancing and imperfect detection (SIR-D2), an extended-state-space Bayesian SIR model (eSIR), and a time-series model (ARIMA). CURVE improves upon other pandemic forecasting solutions by providing adaptable decision support that generates locally calibrated forecasts aligned to health system specific data to guide COVID-19 pandemic planning.  The app additionally enables systematic monitoring of forecast model performance and realignment that keeps pace with the pandemic’s volatile spread and behavior. CURVE provides a flexible pandemic decision support framework that places the most accurate, locally relevant information in front of decision makers to enable health systems to be proactive and prepared.\",\"PeriodicalId\":93459,\"journal\":{\"name\":\"Journal of data science, statistics, and visualisation\",\"volume\":\"5 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of data science, statistics, and visualisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52933/jdssv.v2i7.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science, statistics, and visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52933/jdssv.v2i7.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一个基于网络的交互式决策支持应用程序,该应用程序可以适应特定地区大流行相关变量和知识的快速变化,从而提供及时、准确的见解,为大型医疗保健系统主动应对COVID-19医院资源规划提供信息。我们设计了COVID-19利用和资源可视化引擎(CURVE)应用程序,以适应大流行演变的实时变化,使决策能够得到当代本地数据和准确预测模型的支持。为了证明这种灵活性,我们依次实现了一个包含社交距离和不完美检测(SIR- d2)的易感-感染-移除(SIR)模型、一个扩展状态空间贝叶斯SIR模型(eSIR)和一个时间序列模型(ARIMA)。CURVE在其他大流行预测解决方案的基础上进行了改进,提供适应性决策支持,生成与卫生系统特定数据一致的本地校准预测,以指导COVID-19大流行规划。该应用程序还可以系统地监测预测模型的性能和调整,以跟上大流行的不稳定传播和行为。CURVE提供了一个灵活的大流行决策支持框架,将最准确、与当地相关的信息摆在决策者面前,使卫生系统能够积极主动、做好准备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of an Adaptable COVID-19 Utilization and Resource Visualization Engine (CURVE) to Depict In-Hospital Resource Forecasts Over Time
We developed an interactive web-based, decision support application that can adapt to the rapid pace of change in region-specific pandemic related variables and knowledge, thereby providing timely, accurate insights to inform a large healthcare system’s proactive response to COVID-19 hospital resource planning. We designed the COVID-19 Utilization and Resource Visualization Engine (CURVE) app to be adaptable to real-time changes as the pandemic evolved, enabling decisions to be supported by contemporary local data and accurate predictive models. To demonstrate this flexibility, we sequentially implemented a Susceptible-Infected-Removed (SIR) model that incorporates social-distancing and imperfect detection (SIR-D2), an extended-state-space Bayesian SIR model (eSIR), and a time-series model (ARIMA). CURVE improves upon other pandemic forecasting solutions by providing adaptable decision support that generates locally calibrated forecasts aligned to health system specific data to guide COVID-19 pandemic planning.  The app additionally enables systematic monitoring of forecast model performance and realignment that keeps pace with the pandemic’s volatile spread and behavior. CURVE provides a flexible pandemic decision support framework that places the most accurate, locally relevant information in front of decision makers to enable health systems to be proactive and prepared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信