用缓慢和延迟的视觉反馈跟踪快速动态目标:卡尔曼滤波和基于模型的预测方法

IF 1 Q4 AUTOMATION & CONTROL SYSTEMS
Hui Xiao, Xu Chen
{"title":"用缓慢和延迟的视觉反馈跟踪快速动态目标:卡尔曼滤波和基于模型的预测方法","authors":"Hui Xiao, Xu Chen","doi":"10.1115/dscc2019-9022","DOIUrl":null,"url":null,"abstract":"\n Although visual feedback has enabled a wide range of robotic capabilities such as autonomous navigation and robotic surgery, low sampling rate and time delays of visual outputs continue to hinder real-time applications. When partial knowledge of the target dynamics is available, however, we show the potential of significant performance gain in vision-based target following. Specifically, we propose a new framework with Kalman filters and multirate model-based prediction (1) to reconstruct fast-sampled 3D target position and velocity data, and (2) to compensate the time delay for general robotic motion profiles. Along the path, we study the impact of modeling choices and the delay duration, build simulation tools, and experimentally verify different algorithms with a robot manipulator equipped with an eye-in-hand camera. The results show that the robot can track a moving target with fast dynamics even if the visual measurements are slow and incapable of providing timely information.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"42 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Following Fast-Dynamic Targets With Only Slow and Delayed Visual Feedback: A Kalman Filter and Model-Based Prediction Approach\",\"authors\":\"Hui Xiao, Xu Chen\",\"doi\":\"10.1115/dscc2019-9022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Although visual feedback has enabled a wide range of robotic capabilities such as autonomous navigation and robotic surgery, low sampling rate and time delays of visual outputs continue to hinder real-time applications. When partial knowledge of the target dynamics is available, however, we show the potential of significant performance gain in vision-based target following. Specifically, we propose a new framework with Kalman filters and multirate model-based prediction (1) to reconstruct fast-sampled 3D target position and velocity data, and (2) to compensate the time delay for general robotic motion profiles. Along the path, we study the impact of modeling choices and the delay duration, build simulation tools, and experimentally verify different algorithms with a robot manipulator equipped with an eye-in-hand camera. The results show that the robot can track a moving target with fast dynamics even if the visual measurements are slow and incapable of providing timely information.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

尽管视觉反馈已经实现了广泛的机器人功能,如自主导航和机器人手术,但低采样率和视觉输出的时间延迟仍然阻碍了实时应用。然而,当目标动力学的部分知识可用时,我们展示了在基于视觉的目标跟踪中显著提高性能的潜力。具体来说,我们提出了一个新的框架,其中包括卡尔曼滤波器和基于多速率模型的预测(1)来重建快速采样的3D目标位置和速度数据,以及(2)补偿一般机器人运动轮廓的时间延迟。沿着路径,我们研究了建模选择和延迟时间的影响,构建了仿真工具,并通过配备眼控相机的机器人机械手实验验证了不同的算法。结果表明,在视觉测量速度较慢且不能及时提供信息的情况下,该机器人仍能实现对快速动态运动目标的跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Following Fast-Dynamic Targets With Only Slow and Delayed Visual Feedback: A Kalman Filter and Model-Based Prediction Approach
Although visual feedback has enabled a wide range of robotic capabilities such as autonomous navigation and robotic surgery, low sampling rate and time delays of visual outputs continue to hinder real-time applications. When partial knowledge of the target dynamics is available, however, we show the potential of significant performance gain in vision-based target following. Specifically, we propose a new framework with Kalman filters and multirate model-based prediction (1) to reconstruct fast-sampled 3D target position and velocity data, and (2) to compensate the time delay for general robotic motion profiles. Along the path, we study the impact of modeling choices and the delay duration, build simulation tools, and experimentally verify different algorithms with a robot manipulator equipped with an eye-in-hand camera. The results show that the robot can track a moving target with fast dynamics even if the visual measurements are slow and incapable of providing timely information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechatronic Systems and Control
Mechatronic Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.40
自引率
66.70%
发文量
27
期刊介绍: This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信