二次扩展

IF 1 Q1 MATHEMATICS
Christoph Schwarzweller, Agnieszka Rowinska-Schwarzweller
{"title":"二次扩展","authors":"Christoph Schwarzweller, Agnieszka Rowinska-Schwarzweller","doi":"10.2478/forma-2021-0021","DOIUrl":null,"url":null,"abstract":"Summary In this article we further develop field theory [6], [7], [12] in Mizar [1], [2], [3]: we deal with quadratic polynomials and quadratic extensions [5], [4]. First we introduce quadratic polynomials, their discriminants and prove the midnight formula. Then we show that - in case the discriminant of p being non square - adjoining a root of p’s discriminant results in a splitting field of p. Finally we prove that these are the only field extensions of degree 2, e.g. that an extension E of F is quadratic if and only if there is a non square Element a ∈ F such that E and ( Fa F\\sqrt a ) are isomorphic over F.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":"89 1","pages":"229 - 240"},"PeriodicalIF":1.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadratic Extensions\",\"authors\":\"Christoph Schwarzweller, Agnieszka Rowinska-Schwarzweller\",\"doi\":\"10.2478/forma-2021-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In this article we further develop field theory [6], [7], [12] in Mizar [1], [2], [3]: we deal with quadratic polynomials and quadratic extensions [5], [4]. First we introduce quadratic polynomials, their discriminants and prove the midnight formula. Then we show that - in case the discriminant of p being non square - adjoining a root of p’s discriminant results in a splitting field of p. Finally we prove that these are the only field extensions of degree 2, e.g. that an extension E of F is quadratic if and only if there is a non square Element a ∈ F such that E and ( Fa F\\\\sqrt a ) are isomorphic over F.\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":\"89 1\",\"pages\":\"229 - 240\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2021-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2021-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们在Mizar[1],[2],[3]中进一步发展了场理论[6],[7],[12]:我们处理了二次多项式和二次扩展[5],[4]。首先介绍了二次多项式及其判别式,并证明了午夜公式。然后我们证明了-当p的判别式是非平方的-毗邻p的判别式的一个根会导致p的分裂域。最后我们证明了这些是唯一的2次域扩展,例如,F的扩展E是二次的当且仅当存在一个非平方元素a∈F使得E和(Fa F\sqrt a)在F上同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadratic Extensions
Summary In this article we further develop field theory [6], [7], [12] in Mizar [1], [2], [3]: we deal with quadratic polynomials and quadratic extensions [5], [4]. First we introduce quadratic polynomials, their discriminants and prove the midnight formula. Then we show that - in case the discriminant of p being non square - adjoining a root of p’s discriminant results in a splitting field of p. Finally we prove that these are the only field extensions of degree 2, e.g. that an extension E of F is quadratic if and only if there is a non square Element a ∈ F such that E and ( Fa F\sqrt a ) are isomorphic over F.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信