A. Khodadadi, T. Abedinzadeh, H. Alipour, J. Pouladi
{"title":"弹性响应方案下能源枢纽系统的最优运行","authors":"A. Khodadadi, T. Abedinzadeh, H. Alipour, J. Pouladi","doi":"10.1155/2023/2590362","DOIUrl":null,"url":null,"abstract":"The economic and resilient operation of power systems has always been one of the main priorities of energy systems. In spite of improvements in various fields of energy systems, especially power systems, the issue of resilience has become more important. For this purpose, this paper proposes a multiobjective optimization model to improve the economic performance of energy hub systems and improve the resilience of electrical consumers. Also, consumer welfare, which is a function of the energy not supplied index, is maximized over a 24-hour period by considering extreme weather conditions. The ε-constraint method is applied to solve the proposed model by transforming the multiobjective optimization problem into several single-objective optimization problems. The max-min fuzzy method is also used to select the optimal solution among the Pareto solutions. A sample hub system is made up of electrical, thermal, and gas loads, electrical and thermal energy sources, and storage systems employed as a test system. A group of actions is applied to improve the resilience of the system, which may be affected by outages caused by storms under the resilience response program (RRP). The results proved the efficiency of the proposed RRP in improving economics and resilience.","PeriodicalId":23352,"journal":{"name":"Turkish J. Electr. Eng. Comput. Sci.","volume":"94 1","pages":"2590362:1-2590362:13"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal Operation of Energy Hub Systems under Resiliency Response Options\",\"authors\":\"A. Khodadadi, T. Abedinzadeh, H. Alipour, J. Pouladi\",\"doi\":\"10.1155/2023/2590362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The economic and resilient operation of power systems has always been one of the main priorities of energy systems. In spite of improvements in various fields of energy systems, especially power systems, the issue of resilience has become more important. For this purpose, this paper proposes a multiobjective optimization model to improve the economic performance of energy hub systems and improve the resilience of electrical consumers. Also, consumer welfare, which is a function of the energy not supplied index, is maximized over a 24-hour period by considering extreme weather conditions. The ε-constraint method is applied to solve the proposed model by transforming the multiobjective optimization problem into several single-objective optimization problems. The max-min fuzzy method is also used to select the optimal solution among the Pareto solutions. A sample hub system is made up of electrical, thermal, and gas loads, electrical and thermal energy sources, and storage systems employed as a test system. A group of actions is applied to improve the resilience of the system, which may be affected by outages caused by storms under the resilience response program (RRP). The results proved the efficiency of the proposed RRP in improving economics and resilience.\",\"PeriodicalId\":23352,\"journal\":{\"name\":\"Turkish J. Electr. Eng. Comput. Sci.\",\"volume\":\"94 1\",\"pages\":\"2590362:1-2590362:13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish J. Electr. Eng. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2590362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish J. Electr. Eng. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2590362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Operation of Energy Hub Systems under Resiliency Response Options
The economic and resilient operation of power systems has always been one of the main priorities of energy systems. In spite of improvements in various fields of energy systems, especially power systems, the issue of resilience has become more important. For this purpose, this paper proposes a multiobjective optimization model to improve the economic performance of energy hub systems and improve the resilience of electrical consumers. Also, consumer welfare, which is a function of the energy not supplied index, is maximized over a 24-hour period by considering extreme weather conditions. The ε-constraint method is applied to solve the proposed model by transforming the multiobjective optimization problem into several single-objective optimization problems. The max-min fuzzy method is also used to select the optimal solution among the Pareto solutions. A sample hub system is made up of electrical, thermal, and gas loads, electrical and thermal energy sources, and storage systems employed as a test system. A group of actions is applied to improve the resilience of the system, which may be affected by outages caused by storms under the resilience response program (RRP). The results proved the efficiency of the proposed RRP in improving economics and resilience.