神经机器翻译:方法、资源和工具的回顾

Zhixing Tan , Shuo Wang , Zonghan Yang , Gang Chen , Xuancheng Huang , Maosong Sun , Yang Liu
{"title":"神经机器翻译:方法、资源和工具的回顾","authors":"Zhixing Tan ,&nbsp;Shuo Wang ,&nbsp;Zonghan Yang ,&nbsp;Gang Chen ,&nbsp;Xuancheng Huang ,&nbsp;Maosong Sun ,&nbsp;Yang Liu","doi":"10.1016/j.aiopen.2020.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Machine translation (MT) is an important sub-field of natural language processing that aims to translate natural languages using computers. In recent years, end-to-end neural machine translation (NMT) has achieved great success and has become the new mainstream method in practical MT systems. In this article, we first provide a broad review of the methods for NMT and focus on methods relating to architectures, decoding, and data augmentation. Then we summarize the resources and tools that are useful for researchers. Finally, we conclude with a discussion of possible future research directions.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"1 ","pages":"Pages 5-21"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aiopen.2020.11.001","citationCount":"60","resultStr":"{\"title\":\"Neural machine translation: A review of methods, resources, and tools\",\"authors\":\"Zhixing Tan ,&nbsp;Shuo Wang ,&nbsp;Zonghan Yang ,&nbsp;Gang Chen ,&nbsp;Xuancheng Huang ,&nbsp;Maosong Sun ,&nbsp;Yang Liu\",\"doi\":\"10.1016/j.aiopen.2020.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Machine translation (MT) is an important sub-field of natural language processing that aims to translate natural languages using computers. In recent years, end-to-end neural machine translation (NMT) has achieved great success and has become the new mainstream method in practical MT systems. In this article, we first provide a broad review of the methods for NMT and focus on methods relating to architectures, decoding, and data augmentation. Then we summarize the resources and tools that are useful for researchers. Finally, we conclude with a discussion of possible future research directions.</p></div>\",\"PeriodicalId\":100068,\"journal\":{\"name\":\"AI Open\",\"volume\":\"1 \",\"pages\":\"Pages 5-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.aiopen.2020.11.001\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666651020300024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651020300024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

机器翻译是自然语言处理的一个重要分支,其目的是利用计算机对自然语言进行翻译。近年来,端到端神经机器翻译(NMT)取得了巨大的成功,已成为实用机器翻译系统中新的主流方法。在本文中,我们首先对NMT的方法进行了广泛的回顾,并重点介绍了与体系结构、解码和数据增强相关的方法。然后总结了对研究人员有用的资源和工具。最后,对未来可能的研究方向进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural machine translation: A review of methods, resources, and tools

Machine translation (MT) is an important sub-field of natural language processing that aims to translate natural languages using computers. In recent years, end-to-end neural machine translation (NMT) has achieved great success and has become the new mainstream method in practical MT systems. In this article, we first provide a broad review of the methods for NMT and focus on methods relating to architectures, decoding, and data augmentation. Then we summarize the resources and tools that are useful for researchers. Finally, we conclude with a discussion of possible future research directions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信