自然图像去模糊的非自然L0稀疏表示

Li Xu, Shicheng Zheng, Jiaya Jia
{"title":"自然图像去模糊的非自然L0稀疏表示","authors":"Li Xu, Shicheng Zheng, Jiaya Jia","doi":"10.1109/CVPR.2013.147","DOIUrl":null,"url":null,"abstract":"We show in this paper that the success of previous maximum a posterior (MAP) based blur removal methods partly stems from their respective intermediate steps, which implicitly or explicitly create an unnatural representation containing salient image structures. We propose a generalized and mathematically sound L0 sparse expression, together with a new effective method, for motion deblurring. Our system does not require extra filtering during optimization and demonstrates fast energy decreasing, making a small number of iterations enough for convergence. It also provides a unified framework for both uniform and non-uniform motion deblurring. We extensively validate our method and show comparison with other approaches with respect to convergence speed, running time, and result quality.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"13 1","pages":"1107-1114"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"989","resultStr":"{\"title\":\"Unnatural L0 Sparse Representation for Natural Image Deblurring\",\"authors\":\"Li Xu, Shicheng Zheng, Jiaya Jia\",\"doi\":\"10.1109/CVPR.2013.147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show in this paper that the success of previous maximum a posterior (MAP) based blur removal methods partly stems from their respective intermediate steps, which implicitly or explicitly create an unnatural representation containing salient image structures. We propose a generalized and mathematically sound L0 sparse expression, together with a new effective method, for motion deblurring. Our system does not require extra filtering during optimization and demonstrates fast energy decreasing, making a small number of iterations enough for convergence. It also provides a unified framework for both uniform and non-uniform motion deblurring. We extensively validate our method and show comparison with other approaches with respect to convergence speed, running time, and result quality.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"13 1\",\"pages\":\"1107-1114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"989\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 989

摘要

我们在本文中表明,基于先前最大后验(MAP)的模糊去除方法的成功部分源于它们各自的中间步骤,这些步骤隐式或显式地创建了包含显著图像结构的非自然表示。我们提出了一种广义的、数学上合理的L0稀疏表达式,以及一种新的有效的运动去模糊方法。我们的系统在优化过程中不需要额外的滤波,并且显示出快速的能量下降,使得少量的迭代足以收敛。它还为均匀和非均匀运动去模糊提供了统一的框架。我们广泛地验证了我们的方法,并展示了与其他方法在收敛速度、运行时间和结果质量方面的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unnatural L0 Sparse Representation for Natural Image Deblurring
We show in this paper that the success of previous maximum a posterior (MAP) based blur removal methods partly stems from their respective intermediate steps, which implicitly or explicitly create an unnatural representation containing salient image structures. We propose a generalized and mathematically sound L0 sparse expression, together with a new effective method, for motion deblurring. Our system does not require extra filtering during optimization and demonstrates fast energy decreasing, making a small number of iterations enough for convergence. It also provides a unified framework for both uniform and non-uniform motion deblurring. We extensively validate our method and show comparison with other approaches with respect to convergence speed, running time, and result quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信