2-苯基喹啉基甲基丙烯酸单体的动力学研究

O. Kharchenko, V. Smokal, O. Krupka, A. Kolendo
{"title":"2-苯基喹啉基甲基丙烯酸单体的动力学研究","authors":"O. Kharchenko, V. Smokal, O. Krupka, A. Kolendo","doi":"10.17721/1728-2209.2019.1(56).10","DOIUrl":null,"url":null,"abstract":"Polymethylmethacrylate is widely use material in optics due to its atmosphere resistance, chemical stability, good mechanical properties, transparency and light transmission. Due to these properties, PMMA is often used as a polymeric matrix for creating photosensitive polymers and polymers with nonlinear optical (NLO) properties. Materials with NLO properties can be made by introducing moleculas of chromophores into the polymer chain. There are two fundamentally different ways of doing this. The first is to create composite material where the chromophore is a dispersed phase and is introduced into the system as a \"guest\". In the second case, the chromophore is introduced into the polymer chain covalently, and can be included in the side and the main chain. Studies of polymers containing NLO chromophore in the side chain have shown a number of advantages: better orientation of the chromophores under the action of an electric field; relaxation processes are much slower; increasing time and thermal stability; increasing the glass transition temperature of the polymer. Based on present knowledge we decided to design new methacrylic polymers with styrylquinoline chromophore in side chain. The polymerization ability of the new monomers for free radical homopolymerization was investigated kinetically by using dilatometric method. It was found that new 2-styrylquinoline containing monomers are able to homopolymerization with high conversions (63–83%). The polymerization was carried out in DMF using 2,2´-azobisisobutyronitrile as initiator at 80°C in argon atmosphere. The products of polymerization were characterized by 1H NMR spectroscopy. It was installed that all new monomers have bigger speed of polymerization (Ksum= 1.36–8.33×103 l/mol×s) then methylmethacrylate (Ksum= 0.5×103 l/mol×s), phenylmethacrylate (Ksum= 1.1×103 l/mol×s) and similar to polymerization of 2-methyl-8-oxyquinoline methacrylate (Ksum= 3.28×103 l/mol×s). It was found that speed of polymerization increases with increasing electron donating power of substitute in paraposition of the aromatic ring. It has been proven that presence of electron acceptor group reduces speed of polymerization.","PeriodicalId":9359,"journal":{"name":"Bulletin of Taras Shevchenko National University of Kyiv. Chemistry","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KINETIC'S INVESTIGATION OF METHACRYLIC MONOMERS BASED ON 2-STYRYLQUINOLINE\",\"authors\":\"O. Kharchenko, V. Smokal, O. Krupka, A. Kolendo\",\"doi\":\"10.17721/1728-2209.2019.1(56).10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymethylmethacrylate is widely use material in optics due to its atmosphere resistance, chemical stability, good mechanical properties, transparency and light transmission. Due to these properties, PMMA is often used as a polymeric matrix for creating photosensitive polymers and polymers with nonlinear optical (NLO) properties. Materials with NLO properties can be made by introducing moleculas of chromophores into the polymer chain. There are two fundamentally different ways of doing this. The first is to create composite material where the chromophore is a dispersed phase and is introduced into the system as a \\\"guest\\\". In the second case, the chromophore is introduced into the polymer chain covalently, and can be included in the side and the main chain. Studies of polymers containing NLO chromophore in the side chain have shown a number of advantages: better orientation of the chromophores under the action of an electric field; relaxation processes are much slower; increasing time and thermal stability; increasing the glass transition temperature of the polymer. Based on present knowledge we decided to design new methacrylic polymers with styrylquinoline chromophore in side chain. The polymerization ability of the new monomers for free radical homopolymerization was investigated kinetically by using dilatometric method. It was found that new 2-styrylquinoline containing monomers are able to homopolymerization with high conversions (63–83%). The polymerization was carried out in DMF using 2,2´-azobisisobutyronitrile as initiator at 80°C in argon atmosphere. The products of polymerization were characterized by 1H NMR spectroscopy. It was installed that all new monomers have bigger speed of polymerization (Ksum= 1.36–8.33×103 l/mol×s) then methylmethacrylate (Ksum= 0.5×103 l/mol×s), phenylmethacrylate (Ksum= 1.1×103 l/mol×s) and similar to polymerization of 2-methyl-8-oxyquinoline methacrylate (Ksum= 3.28×103 l/mol×s). It was found that speed of polymerization increases with increasing electron donating power of substitute in paraposition of the aromatic ring. It has been proven that presence of electron acceptor group reduces speed of polymerization.\",\"PeriodicalId\":9359,\"journal\":{\"name\":\"Bulletin of Taras Shevchenko National University of Kyiv. Chemistry\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Taras Shevchenko National University of Kyiv. Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/1728-2209.2019.1(56).10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Taras Shevchenko National University of Kyiv. Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/1728-2209.2019.1(56).10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚甲基丙烯酸甲酯具有耐大气、化学稳定性好、机械性能好、透光性好等优点,是光学领域广泛应用的材料。由于这些特性,PMMA经常被用作聚合物基质,用于制造光敏聚合物和具有非线性光学(NLO)特性的聚合物。通过在聚合物链中引入发色团分子,可以制备出具有NLO性质的材料。有两种根本不同的方法可以做到这一点。首先是创建复合材料,其中发色团是分散相,并作为“来宾”引入系统。在第二种情况下,发色团被共价引入到聚合物链中,并且可以包含在侧链和主链中。在侧链中含有NLO发色团的聚合物的研究显示出许多优点:在电场作用下,发色团具有更好的取向;放松过程要慢得多;增加时间和热稳定性;提高聚合物的玻璃化转变温度。基于现有的知识,我们决定在侧链上设计新的苯基喹啉发色团的甲基丙烯酸聚合物。用扩张法对新单体的自由基均聚能力进行了动力学研究。结果表明,含2-苯基喹啉的新单体具有较高的均聚转化率(63-83%)。以2,2′-偶氮二异丁腈为引发剂,在80℃氩气气氛下,在DMF中进行聚合反应。聚合产物经1H NMR表征。所有新单体的聚合速度(Ksum= 1.36-8.33×103 l/mol×s)均高于甲基丙烯酸甲酯(Ksum= 0.5×103 l/mol×s)、甲基丙烯酸苯酯(Ksum= 1.1×103 l/mol×s),与2-甲基-8-氧喹啉甲基丙烯酸甲酯(Ksum= 3.28×103 l/mol×s)的聚合速度相似。结果表明,随着芳香环取代体给电子能力的增加,聚合速度加快。实验证明,电子受体基团的存在降低了聚合速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KINETIC'S INVESTIGATION OF METHACRYLIC MONOMERS BASED ON 2-STYRYLQUINOLINE
Polymethylmethacrylate is widely use material in optics due to its atmosphere resistance, chemical stability, good mechanical properties, transparency and light transmission. Due to these properties, PMMA is often used as a polymeric matrix for creating photosensitive polymers and polymers with nonlinear optical (NLO) properties. Materials with NLO properties can be made by introducing moleculas of chromophores into the polymer chain. There are two fundamentally different ways of doing this. The first is to create composite material where the chromophore is a dispersed phase and is introduced into the system as a "guest". In the second case, the chromophore is introduced into the polymer chain covalently, and can be included in the side and the main chain. Studies of polymers containing NLO chromophore in the side chain have shown a number of advantages: better orientation of the chromophores under the action of an electric field; relaxation processes are much slower; increasing time and thermal stability; increasing the glass transition temperature of the polymer. Based on present knowledge we decided to design new methacrylic polymers with styrylquinoline chromophore in side chain. The polymerization ability of the new monomers for free radical homopolymerization was investigated kinetically by using dilatometric method. It was found that new 2-styrylquinoline containing monomers are able to homopolymerization with high conversions (63–83%). The polymerization was carried out in DMF using 2,2´-azobisisobutyronitrile as initiator at 80°C in argon atmosphere. The products of polymerization were characterized by 1H NMR spectroscopy. It was installed that all new monomers have bigger speed of polymerization (Ksum= 1.36–8.33×103 l/mol×s) then methylmethacrylate (Ksum= 0.5×103 l/mol×s), phenylmethacrylate (Ksum= 1.1×103 l/mol×s) and similar to polymerization of 2-methyl-8-oxyquinoline methacrylate (Ksum= 3.28×103 l/mol×s). It was found that speed of polymerization increases with increasing electron donating power of substitute in paraposition of the aromatic ring. It has been proven that presence of electron acceptor group reduces speed of polymerization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信