Michael Stephan, Souvik Hazra, Avik Santra, R. Weigel, Georg Fischer
{"title":"基于相机数据知识精馏的FMCW雷达人员计数解决方案","authors":"Michael Stephan, Souvik Hazra, Avik Santra, R. Weigel, Georg Fischer","doi":"10.1109/SENSORS47087.2021.9639798","DOIUrl":null,"url":null,"abstract":"Radar systems enable remote sensing of multiple persons within their field of view. In this paper, we propose a novel architecture to perform people counting using a 60 GHz Frequency Modulated Continuous Wave radar trained on supervised radar data and knowledge distillation performed using synchronized camera data. In the evaluation phase, only the radar encoder with Range - Doppler Images (RDI) as input is used and tested on a dataset consisting of scenarios recorded in a different setup than the training recordings with up to 6 persons present. In this paper we focus on showing the benefit of using the cross-modal camera information compared to the same unimodal model. In spite of the low-cost radar sensor, the proposed architecture achieves an accuracy of 71% compared to 58% for the test data from a different sensor with a different orientation and aspect angle, and an accuracy of 89% compared to 74% for test data from the same radar sensor when training without knowledge distillation.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"183 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"People Counting Solution Using an FMCW Radar with Knowledge Distillation From Camera Data\",\"authors\":\"Michael Stephan, Souvik Hazra, Avik Santra, R. Weigel, Georg Fischer\",\"doi\":\"10.1109/SENSORS47087.2021.9639798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radar systems enable remote sensing of multiple persons within their field of view. In this paper, we propose a novel architecture to perform people counting using a 60 GHz Frequency Modulated Continuous Wave radar trained on supervised radar data and knowledge distillation performed using synchronized camera data. In the evaluation phase, only the radar encoder with Range - Doppler Images (RDI) as input is used and tested on a dataset consisting of scenarios recorded in a different setup than the training recordings with up to 6 persons present. In this paper we focus on showing the benefit of using the cross-modal camera information compared to the same unimodal model. In spite of the low-cost radar sensor, the proposed architecture achieves an accuracy of 71% compared to 58% for the test data from a different sensor with a different orientation and aspect angle, and an accuracy of 89% compared to 74% for test data from the same radar sensor when training without knowledge distillation.\",\"PeriodicalId\":6775,\"journal\":{\"name\":\"2021 IEEE Sensors\",\"volume\":\"183 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47087.2021.9639798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
People Counting Solution Using an FMCW Radar with Knowledge Distillation From Camera Data
Radar systems enable remote sensing of multiple persons within their field of view. In this paper, we propose a novel architecture to perform people counting using a 60 GHz Frequency Modulated Continuous Wave radar trained on supervised radar data and knowledge distillation performed using synchronized camera data. In the evaluation phase, only the radar encoder with Range - Doppler Images (RDI) as input is used and tested on a dataset consisting of scenarios recorded in a different setup than the training recordings with up to 6 persons present. In this paper we focus on showing the benefit of using the cross-modal camera information compared to the same unimodal model. In spite of the low-cost radar sensor, the proposed architecture achieves an accuracy of 71% compared to 58% for the test data from a different sensor with a different orientation and aspect angle, and an accuracy of 89% compared to 74% for test data from the same radar sensor when training without knowledge distillation.