关于抽象H*-代数的结构

CoRR Pub Date : 2018-02-27 DOI:10.4204/EPTCS.266.13
Kevin Dunne
{"title":"关于抽象H*-代数的结构","authors":"Kevin Dunne","doi":"10.4204/EPTCS.266.13","DOIUrl":null,"url":null,"abstract":"Previously we have shown that the topos approach to quantum theory of Doering and Isham can be generalised to a class of categories typically studied within the monoidal approach to quantum theory of Abramsky and Coecke. In the monoidal approach to quantum theory H*-algebras provide an axiomatisation of states and observables. Here we show that H*-algebras naturally correspond with the notions of states and observables in the generalised topos approach to quantum theory. We then combine these results with the dagger-kernel approach to quantumlogic of Heunen and Jacobs, which we use to prove a structure theorem for H*-algebras. This structure theorem is a generalisation of the structure theorem of Ambrose for H*-algebras the category of Hilbert spaces.","PeriodicalId":10720,"journal":{"name":"CoRR","volume":"30 1","pages":"197-208"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Structure of Abstract H*-Algebras\",\"authors\":\"Kevin Dunne\",\"doi\":\"10.4204/EPTCS.266.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previously we have shown that the topos approach to quantum theory of Doering and Isham can be generalised to a class of categories typically studied within the monoidal approach to quantum theory of Abramsky and Coecke. In the monoidal approach to quantum theory H*-algebras provide an axiomatisation of states and observables. Here we show that H*-algebras naturally correspond with the notions of states and observables in the generalised topos approach to quantum theory. We then combine these results with the dagger-kernel approach to quantumlogic of Heunen and Jacobs, which we use to prove a structure theorem for H*-algebras. This structure theorem is a generalisation of the structure theorem of Ambrose for H*-algebras the category of Hilbert spaces.\",\"PeriodicalId\":10720,\"journal\":{\"name\":\"CoRR\",\"volume\":\"30 1\",\"pages\":\"197-208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CoRR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.266.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CoRR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.266.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

以前我们已经证明,Doering和Isham的量子理论的拓扑方法可以推广到一类通常在Abramsky和Coecke的量子理论的一元方法中研究的范畴。在量子理论的一元方法中,H*-代数提供了状态和可观测物的公理化。在这里,我们证明了H*代数自然地与量子理论的广义拓扑方法中的状态和可观测值的概念相对应。然后,我们将这些结果与Heunen和Jacobs的量子逻辑的匕首核方法结合起来,我们使用它来证明H*-代数的结构定理。这个结构定理是Hilbert空间范畴H*-代数的Ambrose结构定理的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Structure of Abstract H*-Algebras
Previously we have shown that the topos approach to quantum theory of Doering and Isham can be generalised to a class of categories typically studied within the monoidal approach to quantum theory of Abramsky and Coecke. In the monoidal approach to quantum theory H*-algebras provide an axiomatisation of states and observables. Here we show that H*-algebras naturally correspond with the notions of states and observables in the generalised topos approach to quantum theory. We then combine these results with the dagger-kernel approach to quantumlogic of Heunen and Jacobs, which we use to prove a structure theorem for H*-algebras. This structure theorem is a generalisation of the structure theorem of Ambrose for H*-algebras the category of Hilbert spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信