Beata Wielgus-Kutrowska , Agnieszka Bzowska , Jan Tebbe , Gertraud Koellner , David Shugar
{"title":"纤维素单胞菌嘌呤核苷磷酸化酶:由酶固有荧光的配体依赖性增强和配体对酶热失活的保护作用决定的理化性质和底物的结合","authors":"Beata Wielgus-Kutrowska , Agnieszka Bzowska , Jan Tebbe , Gertraud Koellner , David Shugar","doi":"10.1016/S0167-4838(02)00313-8","DOIUrl":null,"url":null,"abstract":"<div><p>Purine nucleoside phosphorylase (PNP) from <em>Cellulomonas</em> sp., homotrimeric in the crystalline state, is also a trimer in solution. Other features of the enzyme are typical for “low molecular mass” PNPs, except for its unusual stability at pH 11. Purine bases, α-<span>d</span>-ribose-1-phosphate (R1P) and phosphate enhance the intrinsic fluorescence of <em>Cellulomonas</em> PNP, and hence form binary complexes and induce conformational changes of the protein that alter the microenvironment of tryptophan residue(s). The effect due to guanine (Gua) binding is much higher than those caused by other ligands, suggesting that the enzyme preferentially binds a fluorescent, most probably rare tautomeric anionic form of Gua, further shown by comparison of emission properties of the PNP/Gua complex with that of Gua anion and its <em>N</em>-methyl derivatives. Guanosine (Guo) and inosine (Ino) at 100 μM concentration show little and no effect, respectively, on enzyme intrinsic fluorescence, but their protective effect against thermal inactivation of the enzyme points to their forming weak binary complexes with PNP. Binding of Gua, hypoxanthine (Hx) and R1P to the trimeric enzyme is described by one dissociation constant, <em>K</em><sub>d</sub>=0.46 μM for Gua, 3.0 μM for Hx, and 60 μM for R1P. The binding stoichiometry for Gua (and probably Hx) is three ligand molecules per enzyme trimer. Effects of phosphate on the enzyme intrinsic fluorescence are due not only to binding, but also to an increase in ionic strength, as shown by titration with KCl. When corrected for effects of ionic strength, titration data with phosphate are most consistent with one dissociation constant, <em>K</em><sub>d</sub>=270 μM, but existence of a very weak binding site with <em>K</em><sub>d</sub>>50 mM could not be unequivocally ruled out. Binding of Gua to the PNP/phosphate binary complex is weaker (<em>K</em><sub>d</sub>=1.7 μM) than to the free enzyme (<em>K</em><sub>d</sub>=0.46 μM), suggesting that phosphate helps release the purine base in the catalytic process of phosphorolysis.</p><p>The results indicate that nonlinear kinetic plots of initial velocity, typical for PNPs, including <em>Cellulomonas</em> PNP, are not, as generally assumed, due to cooperative interaction between monomers forming the trimer, but to a more complex kinetic mechanism than hitherto considered.</p></div>","PeriodicalId":100166,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0167-4838(02)00313-8","citationCount":"22","resultStr":"{\"title\":\"Purine nucleoside phosphorylase from Cellulomonas sp.: physicochemical properties and binding of substrates determined by ligand-dependent enhancement of enzyme intrinsic fluorescence, and by protective effects of ligands on thermal inactivation of the enzyme\",\"authors\":\"Beata Wielgus-Kutrowska , Agnieszka Bzowska , Jan Tebbe , Gertraud Koellner , David Shugar\",\"doi\":\"10.1016/S0167-4838(02)00313-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Purine nucleoside phosphorylase (PNP) from <em>Cellulomonas</em> sp., homotrimeric in the crystalline state, is also a trimer in solution. Other features of the enzyme are typical for “low molecular mass” PNPs, except for its unusual stability at pH 11. Purine bases, α-<span>d</span>-ribose-1-phosphate (R1P) and phosphate enhance the intrinsic fluorescence of <em>Cellulomonas</em> PNP, and hence form binary complexes and induce conformational changes of the protein that alter the microenvironment of tryptophan residue(s). The effect due to guanine (Gua) binding is much higher than those caused by other ligands, suggesting that the enzyme preferentially binds a fluorescent, most probably rare tautomeric anionic form of Gua, further shown by comparison of emission properties of the PNP/Gua complex with that of Gua anion and its <em>N</em>-methyl derivatives. Guanosine (Guo) and inosine (Ino) at 100 μM concentration show little and no effect, respectively, on enzyme intrinsic fluorescence, but their protective effect against thermal inactivation of the enzyme points to their forming weak binary complexes with PNP. Binding of Gua, hypoxanthine (Hx) and R1P to the trimeric enzyme is described by one dissociation constant, <em>K</em><sub>d</sub>=0.46 μM for Gua, 3.0 μM for Hx, and 60 μM for R1P. The binding stoichiometry for Gua (and probably Hx) is three ligand molecules per enzyme trimer. Effects of phosphate on the enzyme intrinsic fluorescence are due not only to binding, but also to an increase in ionic strength, as shown by titration with KCl. When corrected for effects of ionic strength, titration data with phosphate are most consistent with one dissociation constant, <em>K</em><sub>d</sub>=270 μM, but existence of a very weak binding site with <em>K</em><sub>d</sub>>50 mM could not be unequivocally ruled out. Binding of Gua to the PNP/phosphate binary complex is weaker (<em>K</em><sub>d</sub>=1.7 μM) than to the free enzyme (<em>K</em><sub>d</sub>=0.46 μM), suggesting that phosphate helps release the purine base in the catalytic process of phosphorolysis.</p><p>The results indicate that nonlinear kinetic plots of initial velocity, typical for PNPs, including <em>Cellulomonas</em> PNP, are not, as generally assumed, due to cooperative interaction between monomers forming the trimer, but to a more complex kinetic mechanism than hitherto considered.</p></div>\",\"PeriodicalId\":100166,\"journal\":{\"name\":\"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0167-4838(02)00313-8\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167483802003138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167483802003138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Purine nucleoside phosphorylase from Cellulomonas sp.: physicochemical properties and binding of substrates determined by ligand-dependent enhancement of enzyme intrinsic fluorescence, and by protective effects of ligands on thermal inactivation of the enzyme
Purine nucleoside phosphorylase (PNP) from Cellulomonas sp., homotrimeric in the crystalline state, is also a trimer in solution. Other features of the enzyme are typical for “low molecular mass” PNPs, except for its unusual stability at pH 11. Purine bases, α-d-ribose-1-phosphate (R1P) and phosphate enhance the intrinsic fluorescence of Cellulomonas PNP, and hence form binary complexes and induce conformational changes of the protein that alter the microenvironment of tryptophan residue(s). The effect due to guanine (Gua) binding is much higher than those caused by other ligands, suggesting that the enzyme preferentially binds a fluorescent, most probably rare tautomeric anionic form of Gua, further shown by comparison of emission properties of the PNP/Gua complex with that of Gua anion and its N-methyl derivatives. Guanosine (Guo) and inosine (Ino) at 100 μM concentration show little and no effect, respectively, on enzyme intrinsic fluorescence, but their protective effect against thermal inactivation of the enzyme points to their forming weak binary complexes with PNP. Binding of Gua, hypoxanthine (Hx) and R1P to the trimeric enzyme is described by one dissociation constant, Kd=0.46 μM for Gua, 3.0 μM for Hx, and 60 μM for R1P. The binding stoichiometry for Gua (and probably Hx) is three ligand molecules per enzyme trimer. Effects of phosphate on the enzyme intrinsic fluorescence are due not only to binding, but also to an increase in ionic strength, as shown by titration with KCl. When corrected for effects of ionic strength, titration data with phosphate are most consistent with one dissociation constant, Kd=270 μM, but existence of a very weak binding site with Kd>50 mM could not be unequivocally ruled out. Binding of Gua to the PNP/phosphate binary complex is weaker (Kd=1.7 μM) than to the free enzyme (Kd=0.46 μM), suggesting that phosphate helps release the purine base in the catalytic process of phosphorolysis.
The results indicate that nonlinear kinetic plots of initial velocity, typical for PNPs, including Cellulomonas PNP, are not, as generally assumed, due to cooperative interaction between monomers forming the trimer, but to a more complex kinetic mechanism than hitherto considered.