结构电学模型与参数风险的渐近正态估计

Q3 Mathematics
Cord Harms, R. Kiesel
{"title":"结构电学模型与参数风险的渐近正态估计","authors":"Cord Harms, R. Kiesel","doi":"10.1080/1350486X.2020.1725582","DOIUrl":null,"url":null,"abstract":"ABSTRACT We estimate a structural electricity (multi-commodity) model based on historical spot and futures data (fuels and power prices, respectively) and quantify the inherent parameter risk using an average value at risk approach (‘expected shortfall’). The mathematical proofs use the theory of asymptotic statistics to derive a parameter risk measure. We use far in-the-money options to derive a confidence level and use it as a prudent present value adjustment when pricing a virtual power plant. Finally, we conduct a present value benchmarking to compare the approach of temperature-driven demand (based on load data) to an ‘implied demand approach’ (demand implied from observable power futures prices). We observe that the implied demand approach can easily capture observed electricity price volatility whereas the estimation against observable load data will lead to a gap, because – amongst others – the interplay of demand and supply is not captured in the data (i.e., unexpected mismatches).","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"178 1","pages":"475 - 522"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structural Electricity Models and Asymptotically Normal Estimators to Quantify Parameter Risk\",\"authors\":\"Cord Harms, R. Kiesel\",\"doi\":\"10.1080/1350486X.2020.1725582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We estimate a structural electricity (multi-commodity) model based on historical spot and futures data (fuels and power prices, respectively) and quantify the inherent parameter risk using an average value at risk approach (‘expected shortfall’). The mathematical proofs use the theory of asymptotic statistics to derive a parameter risk measure. We use far in-the-money options to derive a confidence level and use it as a prudent present value adjustment when pricing a virtual power plant. Finally, we conduct a present value benchmarking to compare the approach of temperature-driven demand (based on load data) to an ‘implied demand approach’ (demand implied from observable power futures prices). We observe that the implied demand approach can easily capture observed electricity price volatility whereas the estimation against observable load data will lead to a gap, because – amongst others – the interplay of demand and supply is not captured in the data (i.e., unexpected mismatches).\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":\"178 1\",\"pages\":\"475 - 522\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2020.1725582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2020.1725582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

我们基于历史现货和期货数据(分别为燃料和电力价格)估计了一个结构性电力(多商品)模型,并使用风险均值方法(“预期短缺”)量化了固有参数风险。数学证明利用渐近统计理论推导出参数风险测度。我们使用远值期权来推导置信水平,并在为虚拟电厂定价时将其用作谨慎的现值调整。最后,我们进行了现值基准测试,将温度驱动需求方法(基于负荷数据)与“隐含需求方法”(从可观察的电力期货价格隐含的需求)进行比较。我们观察到,隐含需求方法可以很容易地捕捉到观察到的电价波动,而根据可观察到的负荷数据进行估计将导致差距,因为——除其他外——需求和供应的相互作用没有在数据中被捕捉到(即,意外的不匹配)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Electricity Models and Asymptotically Normal Estimators to Quantify Parameter Risk
ABSTRACT We estimate a structural electricity (multi-commodity) model based on historical spot and futures data (fuels and power prices, respectively) and quantify the inherent parameter risk using an average value at risk approach (‘expected shortfall’). The mathematical proofs use the theory of asymptotic statistics to derive a parameter risk measure. We use far in-the-money options to derive a confidence level and use it as a prudent present value adjustment when pricing a virtual power plant. Finally, we conduct a present value benchmarking to compare the approach of temperature-driven demand (based on load data) to an ‘implied demand approach’ (demand implied from observable power futures prices). We observe that the implied demand approach can easily capture observed electricity price volatility whereas the estimation against observable load data will lead to a gap, because – amongst others – the interplay of demand and supply is not captured in the data (i.e., unexpected mismatches).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信