{"title":"一种用于监控高维数据流的EWMA方案","authors":"Long Feng, Haojie Ren, Changliang Zou","doi":"10.1142/S2010326320500045","DOIUrl":null,"url":null,"abstract":"The monitoring of high-dimensional data streams has become increasingly important for real-time detection of abnormal activities in many statistical process control (SPC) applications. Although the multivariate SPC has been extensively studied in the literature, the challenges associated with designing a practical monitoring scheme for high-dimensional processes when between-streams correlation exists are yet to be addressed well. Classical [Formula: see text]-test-based schemes do not work well because the contamination bias in estimating the covariance matrix grows rapidly with the increase of dimension. We propose a test statistic which is based on the “divide-and-conquer” strategy, and integrate this statistic into the multivariate exponentially weighted moving average charting scheme for Phase II process monitoring. The key idea is to calculate the [Formula: see text] statistics on low-dimensional sub-vectors and to combine them together. The proposed procedure is essentially distribution-free and computation efficient. The control limit is obtained through the asymptotic distribution of the test statistic under some mild conditions on the dependence structure of stream observations. Our asymptotic results also shed light on quantifying the size of a reference sample required. Both theoretical analysis and numerical results show that the proposed method is able to control the false alarm rate and deliver robust change detection.","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"36 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A setwise EWMA scheme for monitoring high-dimensional datastreams\",\"authors\":\"Long Feng, Haojie Ren, Changliang Zou\",\"doi\":\"10.1142/S2010326320500045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The monitoring of high-dimensional data streams has become increasingly important for real-time detection of abnormal activities in many statistical process control (SPC) applications. Although the multivariate SPC has been extensively studied in the literature, the challenges associated with designing a practical monitoring scheme for high-dimensional processes when between-streams correlation exists are yet to be addressed well. Classical [Formula: see text]-test-based schemes do not work well because the contamination bias in estimating the covariance matrix grows rapidly with the increase of dimension. We propose a test statistic which is based on the “divide-and-conquer” strategy, and integrate this statistic into the multivariate exponentially weighted moving average charting scheme for Phase II process monitoring. The key idea is to calculate the [Formula: see text] statistics on low-dimensional sub-vectors and to combine them together. The proposed procedure is essentially distribution-free and computation efficient. The control limit is obtained through the asymptotic distribution of the test statistic under some mild conditions on the dependence structure of stream observations. Our asymptotic results also shed light on quantifying the size of a reference sample required. Both theoretical analysis and numerical results show that the proposed method is able to control the false alarm rate and deliver robust change detection.\",\"PeriodicalId\":54329,\"journal\":{\"name\":\"Random Matrices-Theory and Applications\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Matrices-Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010326320500045\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326320500045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
A setwise EWMA scheme for monitoring high-dimensional datastreams
The monitoring of high-dimensional data streams has become increasingly important for real-time detection of abnormal activities in many statistical process control (SPC) applications. Although the multivariate SPC has been extensively studied in the literature, the challenges associated with designing a practical monitoring scheme for high-dimensional processes when between-streams correlation exists are yet to be addressed well. Classical [Formula: see text]-test-based schemes do not work well because the contamination bias in estimating the covariance matrix grows rapidly with the increase of dimension. We propose a test statistic which is based on the “divide-and-conquer” strategy, and integrate this statistic into the multivariate exponentially weighted moving average charting scheme for Phase II process monitoring. The key idea is to calculate the [Formula: see text] statistics on low-dimensional sub-vectors and to combine them together. The proposed procedure is essentially distribution-free and computation efficient. The control limit is obtained through the asymptotic distribution of the test statistic under some mild conditions on the dependence structure of stream observations. Our asymptotic results also shed light on quantifying the size of a reference sample required. Both theoretical analysis and numerical results show that the proposed method is able to control the false alarm rate and deliver robust change detection.
期刊介绍:
Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics.
Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory.
Special issues devoted to single topic of current interest will also be considered and published in this journal.