{"title":"基于最大类可分性的有效特征选择方法在滚珠轴承故障诊断中的应用","authors":"T. Thelaidjia, Abdelkrim Moussaoui, S. Chenikher","doi":"10.1504/ijdats.2019.10018906","DOIUrl":null,"url":null,"abstract":"The paper deals with the development of a novel feature selection approach for bearing fault diagnosis to overcome drawbacks of the distance evaluation technique (DET); one of the well-established feature selection approaches. Its drawbacks are the influence of its effectiveness by the noise and the selection of salient features regardless of the classification system. To overcome these shortcomings, an optimal discrete wavelet transform (DWT) is firstly used to decompose the bearing vibration signal at different decomposition depths to enhance the signal to noise ratio. Then, a combination of DET with binary particle swarm optimisation (BPSO) algorithm and a criterion based on scatter matrices employed as an objective function are suggested to improve the classification performances and to reduce the computational time. Finally, support vector machine is utilised to automate the identification of different bearing conditions. From the obtained results, the effectiveness of the suggested method is proven.","PeriodicalId":38582,"journal":{"name":"International Journal of Data Analysis Techniques and Strategies","volume":"11 1","pages":"115-132"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An effective feature selection method based on maximum class separability for fault diagnosis of ball bearing\",\"authors\":\"T. Thelaidjia, Abdelkrim Moussaoui, S. Chenikher\",\"doi\":\"10.1504/ijdats.2019.10018906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the development of a novel feature selection approach for bearing fault diagnosis to overcome drawbacks of the distance evaluation technique (DET); one of the well-established feature selection approaches. Its drawbacks are the influence of its effectiveness by the noise and the selection of salient features regardless of the classification system. To overcome these shortcomings, an optimal discrete wavelet transform (DWT) is firstly used to decompose the bearing vibration signal at different decomposition depths to enhance the signal to noise ratio. Then, a combination of DET with binary particle swarm optimisation (BPSO) algorithm and a criterion based on scatter matrices employed as an objective function are suggested to improve the classification performances and to reduce the computational time. Finally, support vector machine is utilised to automate the identification of different bearing conditions. From the obtained results, the effectiveness of the suggested method is proven.\",\"PeriodicalId\":38582,\"journal\":{\"name\":\"International Journal of Data Analysis Techniques and Strategies\",\"volume\":\"11 1\",\"pages\":\"115-132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Analysis Techniques and Strategies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijdats.2019.10018906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Analysis Techniques and Strategies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijdats.2019.10018906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
An effective feature selection method based on maximum class separability for fault diagnosis of ball bearing
The paper deals with the development of a novel feature selection approach for bearing fault diagnosis to overcome drawbacks of the distance evaluation technique (DET); one of the well-established feature selection approaches. Its drawbacks are the influence of its effectiveness by the noise and the selection of salient features regardless of the classification system. To overcome these shortcomings, an optimal discrete wavelet transform (DWT) is firstly used to decompose the bearing vibration signal at different decomposition depths to enhance the signal to noise ratio. Then, a combination of DET with binary particle swarm optimisation (BPSO) algorithm and a criterion based on scatter matrices employed as an objective function are suggested to improve the classification performances and to reduce the computational time. Finally, support vector machine is utilised to automate the identification of different bearing conditions. From the obtained results, the effectiveness of the suggested method is proven.