依赖关系预测的单类顺序嵌入

Meng-Fen Chiang, Ee-Peng Lim, Wang-Chien Lee, Xavier Jayaraj Siddarth Ashok, Philips Kokoh Prasetyo
{"title":"依赖关系预测的单类顺序嵌入","authors":"Meng-Fen Chiang, Ee-Peng Lim, Wang-Chien Lee, Xavier Jayaraj Siddarth Ashok, Philips Kokoh Prasetyo","doi":"10.1145/3331184.3331249","DOIUrl":null,"url":null,"abstract":"Learning the dependency relations among entities and the hierarchy formed by these relations by mapping entities into some order embedding space can effectively enable several important applications, including knowledge base completion and prerequisite relations prediction. Nevertheless, it is very challenging to learn a good order embedding due to the existence of partial ordering and missing relations in the observed data. Moreover, most application scenarios do not provide non-trivial negative dependency relation instances. We therefore propose a framework that performs dependency relation prediction by exploring both rich semantic and hierarchical structure information in the data. In particular, we propose several negative sampling strategies based on graph-specific centrality properties, which supplement the positive dependency relations with appropriate negative samples to effectively learn order embeddings. This research not only addresses the needs of automatically recovering missing dependency relations, but also unravels dependencies among entities using several real-world datasets, such as course dependency hierarchy involving course prerequisite relations, job hierarchy in organizations, and paper citation hierarchy. Extensive experiments are conducted on both synthetic and real-world datasets to demonstrate the prediction accuracy as well as to gain insights using the learned order embedding.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"One-Class Order Embedding for Dependency Relation Prediction\",\"authors\":\"Meng-Fen Chiang, Ee-Peng Lim, Wang-Chien Lee, Xavier Jayaraj Siddarth Ashok, Philips Kokoh Prasetyo\",\"doi\":\"10.1145/3331184.3331249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning the dependency relations among entities and the hierarchy formed by these relations by mapping entities into some order embedding space can effectively enable several important applications, including knowledge base completion and prerequisite relations prediction. Nevertheless, it is very challenging to learn a good order embedding due to the existence of partial ordering and missing relations in the observed data. Moreover, most application scenarios do not provide non-trivial negative dependency relation instances. We therefore propose a framework that performs dependency relation prediction by exploring both rich semantic and hierarchical structure information in the data. In particular, we propose several negative sampling strategies based on graph-specific centrality properties, which supplement the positive dependency relations with appropriate negative samples to effectively learn order embeddings. This research not only addresses the needs of automatically recovering missing dependency relations, but also unravels dependencies among entities using several real-world datasets, such as course dependency hierarchy involving course prerequisite relations, job hierarchy in organizations, and paper citation hierarchy. Extensive experiments are conducted on both synthetic and real-world datasets to demonstrate the prediction accuracy as well as to gain insights using the learned order embedding.\",\"PeriodicalId\":20700,\"journal\":{\"name\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331184.3331249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

通过将实体映射到某个顺序嵌入空间,学习实体之间的依赖关系以及这些关系所形成的层次结构,可以有效地实现知识库补全和前提关系预测等重要应用。然而,由于观测数据中存在偏序和缺失关系,学习一个好的序嵌入是非常具有挑战性的。此外,大多数应用程序场景不提供重要的负依赖关系实例。因此,我们提出了一个框架,通过探索数据中丰富的语义和层次结构信息来执行依赖关系预测。特别是,我们提出了几种基于图特定中心性的负采样策略,这些策略用适当的负样本补充了正依赖关系,以有效地学习阶嵌入。本研究不仅解决了自动恢复缺失依赖关系的需求,还利用多个真实数据集揭示了实体之间的依赖关系,如涉及课程先决条件关系的课程依赖层次、组织中的工作层次和论文引用层次。在合成和现实世界的数据集上进行了大量的实验,以证明预测的准确性以及使用学习的顺序嵌入获得的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-Class Order Embedding for Dependency Relation Prediction
Learning the dependency relations among entities and the hierarchy formed by these relations by mapping entities into some order embedding space can effectively enable several important applications, including knowledge base completion and prerequisite relations prediction. Nevertheless, it is very challenging to learn a good order embedding due to the existence of partial ordering and missing relations in the observed data. Moreover, most application scenarios do not provide non-trivial negative dependency relation instances. We therefore propose a framework that performs dependency relation prediction by exploring both rich semantic and hierarchical structure information in the data. In particular, we propose several negative sampling strategies based on graph-specific centrality properties, which supplement the positive dependency relations with appropriate negative samples to effectively learn order embeddings. This research not only addresses the needs of automatically recovering missing dependency relations, but also unravels dependencies among entities using several real-world datasets, such as course dependency hierarchy involving course prerequisite relations, job hierarchy in organizations, and paper citation hierarchy. Extensive experiments are conducted on both synthetic and real-world datasets to demonstrate the prediction accuracy as well as to gain insights using the learned order embedding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信