Maolin Bo, Hanze Li, Zhongkai Huang, Lei Li, Chuang Yao
{"title":"二维Sb/MoSe2和Sb/MoTe2范德华异质结构的键弛豫和电子性质","authors":"Maolin Bo, Hanze Li, Zhongkai Huang, Lei Li, Chuang Yao","doi":"10.1063/1.5130533","DOIUrl":null,"url":null,"abstract":"Van der Waals heterostructures have recently garnered interest for application in high-performance photovoltaic materials. Consequently, understanding the basic electronic characteristics of these heterostructures is important for their utilisation in optoelectronic devices. The electronic structures and bond relaxation of two-dimensional (2D) Sb/transition metal disulfides (TMDs, MoSe2, and MoTe2) van der Waals heterostructures were systematically studied using the bond-charge (BC) correlation and hybrid density functional theory. We found that the Sb/MoSe2 and Sb/MoTe2 heterostructures had indirect band gaps of 0.701 and 0.808 eV, respectively; further, these heterostructures effectively modulated the band gaps of MoSe2 (1.463 eV) and MoTe2 (1.173 eV). The BC correlation revealed four bonding and electronic contributions (electron-holes, antibonding, nonbonding, and bonding states) of the heterostructures. Our results provide an in-depth understanding of the Sb/TMD van der Waals heterojunction, which should be utilised to design 2D metal/semiconductor-based devices.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":"119 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bond relaxation and electronic properties of two-dimensional Sb/MoSe2 and Sb/MoTe2 van der Waals heterostructures\",\"authors\":\"Maolin Bo, Hanze Li, Zhongkai Huang, Lei Li, Chuang Yao\",\"doi\":\"10.1063/1.5130533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Van der Waals heterostructures have recently garnered interest for application in high-performance photovoltaic materials. Consequently, understanding the basic electronic characteristics of these heterostructures is important for their utilisation in optoelectronic devices. The electronic structures and bond relaxation of two-dimensional (2D) Sb/transition metal disulfides (TMDs, MoSe2, and MoTe2) van der Waals heterostructures were systematically studied using the bond-charge (BC) correlation and hybrid density functional theory. We found that the Sb/MoSe2 and Sb/MoTe2 heterostructures had indirect band gaps of 0.701 and 0.808 eV, respectively; further, these heterostructures effectively modulated the band gaps of MoSe2 (1.463 eV) and MoTe2 (1.173 eV). The BC correlation revealed four bonding and electronic contributions (electron-holes, antibonding, nonbonding, and bonding states) of the heterostructures. Our results provide an in-depth understanding of the Sb/TMD van der Waals heterojunction, which should be utilised to design 2D metal/semiconductor-based devices.\",\"PeriodicalId\":8424,\"journal\":{\"name\":\"arXiv: Computational Physics\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5130533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5130533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bond relaxation and electronic properties of two-dimensional Sb/MoSe2 and Sb/MoTe2 van der Waals heterostructures
Van der Waals heterostructures have recently garnered interest for application in high-performance photovoltaic materials. Consequently, understanding the basic electronic characteristics of these heterostructures is important for their utilisation in optoelectronic devices. The electronic structures and bond relaxation of two-dimensional (2D) Sb/transition metal disulfides (TMDs, MoSe2, and MoTe2) van der Waals heterostructures were systematically studied using the bond-charge (BC) correlation and hybrid density functional theory. We found that the Sb/MoSe2 and Sb/MoTe2 heterostructures had indirect band gaps of 0.701 and 0.808 eV, respectively; further, these heterostructures effectively modulated the band gaps of MoSe2 (1.463 eV) and MoTe2 (1.173 eV). The BC correlation revealed four bonding and electronic contributions (electron-holes, antibonding, nonbonding, and bonding states) of the heterostructures. Our results provide an in-depth understanding of the Sb/TMD van der Waals heterojunction, which should be utilised to design 2D metal/semiconductor-based devices.