M. Won, C. P. Langcuyan, Jeong-Hoo Choi, Yang-Seong Ha
{"title":"基于数值分析的既有土工格栅加筋土墙加固实例研究","authors":"M. Won, C. P. Langcuyan, Jeong-Hoo Choi, Yang-Seong Ha","doi":"10.12814/JKGSS.2020.19.1.075","DOIUrl":null,"url":null,"abstract":"There have been often cases of collapse for geogrid reinforced soil (GRS) retaining wall. Hence, social interest in the reinforcement and restoration of the collapsed GRS wall is increasing day by day. However, there are only few researches. For this reason, a series of numerical analyses using the Plaxis 2D program was conducted in this study to analyze the suitable reinforcement methods that can be applied on the existing damaged GRS wall caused by overturning of the modular blocks facing and the surface settlement at the backfill as the results from the design failure. The restoration plan used in this study is composed of two cases: (Case 1) soil nailing reinforcement and reinforced concrete (RC) wall facing construction on the existing damaged GRS wall; and (Case 2) removal of the entire damaged GRS wall and then reconstruction. The results on the internal stability of the GRS wall show that Case 1 obtained a greater safety factor than Case 2 for tensile force while Case 2 had a greater safety factor than Case 1 for pullout failures. Case 1 was found to be more stable than Case 2 in terms of the global slope safety by shear strength reduction method and the external deformation behavior by numerical analysis. In this study, the existing damaged GRS wall which was reinforced using Case 1 method shows more stable external behavior.","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":"359 1","pages":"75-82"},"PeriodicalIF":0.4000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Case Study on the Reinforcement of Existing Damaged Geogrid Reinforced Soil Wall Using Numerical Analyses\",\"authors\":\"M. Won, C. P. Langcuyan, Jeong-Hoo Choi, Yang-Seong Ha\",\"doi\":\"10.12814/JKGSS.2020.19.1.075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There have been often cases of collapse for geogrid reinforced soil (GRS) retaining wall. Hence, social interest in the reinforcement and restoration of the collapsed GRS wall is increasing day by day. However, there are only few researches. For this reason, a series of numerical analyses using the Plaxis 2D program was conducted in this study to analyze the suitable reinforcement methods that can be applied on the existing damaged GRS wall caused by overturning of the modular blocks facing and the surface settlement at the backfill as the results from the design failure. The restoration plan used in this study is composed of two cases: (Case 1) soil nailing reinforcement and reinforced concrete (RC) wall facing construction on the existing damaged GRS wall; and (Case 2) removal of the entire damaged GRS wall and then reconstruction. The results on the internal stability of the GRS wall show that Case 1 obtained a greater safety factor than Case 2 for tensile force while Case 2 had a greater safety factor than Case 1 for pullout failures. Case 1 was found to be more stable than Case 2 in terms of the global slope safety by shear strength reduction method and the external deformation behavior by numerical analysis. In this study, the existing damaged GRS wall which was reinforced using Case 1 method shows more stable external behavior.\",\"PeriodicalId\":42164,\"journal\":{\"name\":\"Journal of the Korean Geosynthetic Society\",\"volume\":\"359 1\",\"pages\":\"75-82\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Geosynthetic Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12814/JKGSS.2020.19.1.075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Geosynthetic Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12814/JKGSS.2020.19.1.075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
A Case Study on the Reinforcement of Existing Damaged Geogrid Reinforced Soil Wall Using Numerical Analyses
There have been often cases of collapse for geogrid reinforced soil (GRS) retaining wall. Hence, social interest in the reinforcement and restoration of the collapsed GRS wall is increasing day by day. However, there are only few researches. For this reason, a series of numerical analyses using the Plaxis 2D program was conducted in this study to analyze the suitable reinforcement methods that can be applied on the existing damaged GRS wall caused by overturning of the modular blocks facing and the surface settlement at the backfill as the results from the design failure. The restoration plan used in this study is composed of two cases: (Case 1) soil nailing reinforcement and reinforced concrete (RC) wall facing construction on the existing damaged GRS wall; and (Case 2) removal of the entire damaged GRS wall and then reconstruction. The results on the internal stability of the GRS wall show that Case 1 obtained a greater safety factor than Case 2 for tensile force while Case 2 had a greater safety factor than Case 1 for pullout failures. Case 1 was found to be more stable than Case 2 in terms of the global slope safety by shear strength reduction method and the external deformation behavior by numerical analysis. In this study, the existing damaged GRS wall which was reinforced using Case 1 method shows more stable external behavior.