基于数值分析的既有土工格栅加筋土墙加固实例研究

IF 0.4 Q4 ENGINEERING, GEOLOGICAL
M. Won, C. P. Langcuyan, Jeong-Hoo Choi, Yang-Seong Ha
{"title":"基于数值分析的既有土工格栅加筋土墙加固实例研究","authors":"M. Won, C. P. Langcuyan, Jeong-Hoo Choi, Yang-Seong Ha","doi":"10.12814/JKGSS.2020.19.1.075","DOIUrl":null,"url":null,"abstract":"There have been often cases of collapse for geogrid reinforced soil (GRS) retaining wall. Hence, social interest in the reinforcement and restoration of the collapsed GRS wall is increasing day by day. However, there are only few researches. For this reason, a series of numerical analyses using the Plaxis 2D program was conducted in this study to analyze the suitable reinforcement methods that can be applied on the existing damaged GRS wall caused by overturning of the modular blocks facing and the surface settlement at the backfill as the results from the design failure. The restoration plan used in this study is composed of two cases: (Case 1) soil nailing reinforcement and reinforced concrete (RC) wall facing construction on the existing damaged GRS wall; and (Case 2) removal of the entire damaged GRS wall and then reconstruction. The results on the internal stability of the GRS wall show that Case 1 obtained a greater safety factor than Case 2 for tensile force while Case 2 had a greater safety factor than Case 1 for pullout failures. Case 1 was found to be more stable than Case 2 in terms of the global slope safety by shear strength reduction method and the external deformation behavior by numerical analysis. In this study, the existing damaged GRS wall which was reinforced using Case 1 method shows more stable external behavior.","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":"359 1","pages":"75-82"},"PeriodicalIF":0.4000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Case Study on the Reinforcement of Existing Damaged Geogrid Reinforced Soil Wall Using Numerical Analyses\",\"authors\":\"M. Won, C. P. Langcuyan, Jeong-Hoo Choi, Yang-Seong Ha\",\"doi\":\"10.12814/JKGSS.2020.19.1.075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There have been often cases of collapse for geogrid reinforced soil (GRS) retaining wall. Hence, social interest in the reinforcement and restoration of the collapsed GRS wall is increasing day by day. However, there are only few researches. For this reason, a series of numerical analyses using the Plaxis 2D program was conducted in this study to analyze the suitable reinforcement methods that can be applied on the existing damaged GRS wall caused by overturning of the modular blocks facing and the surface settlement at the backfill as the results from the design failure. The restoration plan used in this study is composed of two cases: (Case 1) soil nailing reinforcement and reinforced concrete (RC) wall facing construction on the existing damaged GRS wall; and (Case 2) removal of the entire damaged GRS wall and then reconstruction. The results on the internal stability of the GRS wall show that Case 1 obtained a greater safety factor than Case 2 for tensile force while Case 2 had a greater safety factor than Case 1 for pullout failures. Case 1 was found to be more stable than Case 2 in terms of the global slope safety by shear strength reduction method and the external deformation behavior by numerical analysis. In this study, the existing damaged GRS wall which was reinforced using Case 1 method shows more stable external behavior.\",\"PeriodicalId\":42164,\"journal\":{\"name\":\"Journal of the Korean Geosynthetic Society\",\"volume\":\"359 1\",\"pages\":\"75-82\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Geosynthetic Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12814/JKGSS.2020.19.1.075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Geosynthetic Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12814/JKGSS.2020.19.1.075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1

摘要

土工格栅加筋土挡土墙倒塌事故时有发生。因此,社会对倒塌GRS墙的加固和修复的关注日益增加。然而,这方面的研究却很少。为此,本研究利用Plaxis 2D程序进行了一系列数值分析,分析了由于设计失效导致的模块化砌块面倾覆和回填体处地表沉降所造成的现有GRS墙体损伤的合适加固方法。本研究采用的修复方案由两种情况组成:(案例1)土钉加固和钢筋混凝土(RC)墙面施工对现有受损的GRS墙;(病例2)切除整个受损的GRS壁,然后重建。对GRS墙体内部稳定性的分析结果表明,case1的抗拉力安全系数大于case2, case2的拉拔破坏安全系数大于case1。通过抗剪强度折减法和数值分析,发现情况1比情况2在整体安全性上更稳定。在本研究中,使用案例1方法加固的现有破损GRS墙表现出更稳定的外行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Case Study on the Reinforcement of Existing Damaged Geogrid Reinforced Soil Wall Using Numerical Analyses
There have been often cases of collapse for geogrid reinforced soil (GRS) retaining wall. Hence, social interest in the reinforcement and restoration of the collapsed GRS wall is increasing day by day. However, there are only few researches. For this reason, a series of numerical analyses using the Plaxis 2D program was conducted in this study to analyze the suitable reinforcement methods that can be applied on the existing damaged GRS wall caused by overturning of the modular blocks facing and the surface settlement at the backfill as the results from the design failure. The restoration plan used in this study is composed of two cases: (Case 1) soil nailing reinforcement and reinforced concrete (RC) wall facing construction on the existing damaged GRS wall; and (Case 2) removal of the entire damaged GRS wall and then reconstruction. The results on the internal stability of the GRS wall show that Case 1 obtained a greater safety factor than Case 2 for tensile force while Case 2 had a greater safety factor than Case 1 for pullout failures. Case 1 was found to be more stable than Case 2 in terms of the global slope safety by shear strength reduction method and the external deformation behavior by numerical analysis. In this study, the existing damaged GRS wall which was reinforced using Case 1 method shows more stable external behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
20.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信