多图上的一般随机匹配模型

Jocelyn Begeot, Irène Marcovici, P. Moyal, Youssef Rahme
{"title":"多图上的一般随机匹配模型","authors":"Jocelyn Begeot, Irène Marcovici, P. Moyal, Youssef Rahme","doi":"10.30757/alea.v18-49","DOIUrl":null,"url":null,"abstract":"We extend the general stochastic matching model on graphs introduced in (Mairesse and Moyal, 2016), to matching models on multigraphs, that is, graphs with self-loops. \nThe evolution of the model can be described by a discrete time Markov chain whose positive recurrence is investigated. \nNecessary and sufficient stability conditions are provided, together with the explicit form of the stationary probability in the case where the matching policy is `First Come, First Matched'.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A general stochastic matching model on multigraphs\",\"authors\":\"Jocelyn Begeot, Irène Marcovici, P. Moyal, Youssef Rahme\",\"doi\":\"10.30757/alea.v18-49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the general stochastic matching model on graphs introduced in (Mairesse and Moyal, 2016), to matching models on multigraphs, that is, graphs with self-loops. \\nThe evolution of the model can be described by a discrete time Markov chain whose positive recurrence is investigated. \\nNecessary and sufficient stability conditions are provided, together with the explicit form of the stationary probability in the case where the matching policy is `First Come, First Matched'.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v18-49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30757/alea.v18-49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们将(Mairesse和Moyal, 2016)中介绍的图上的一般随机匹配模型扩展到多图上的匹配模型,即具有自循环的图。模型的演化可以用离散时间马尔可夫链来描述,研究了马尔可夫链的正递推性。给出了系统稳定性的充分必要条件,并给出了匹配策略为“先到先匹配”时平稳概率的显式形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A general stochastic matching model on multigraphs
We extend the general stochastic matching model on graphs introduced in (Mairesse and Moyal, 2016), to matching models on multigraphs, that is, graphs with self-loops. The evolution of the model can be described by a discrete time Markov chain whose positive recurrence is investigated. Necessary and sufficient stability conditions are provided, together with the explicit form of the stationary probability in the case where the matching policy is `First Come, First Matched'.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信