{"title":"极性切向角和自由弹性","authors":"Tatsuya Miura","doi":"10.3934/MINE.2021034","DOIUrl":null,"url":null,"abstract":"In this note we investigate the behavior of the polar tangential angle of a general plane curve, and in particular prove its monotonicity for certain curves of monotone curvature. As an application we give (non)existence results for an obstacle problem involving free elasticae.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Polar tangential angles and free elasticae\",\"authors\":\"Tatsuya Miura\",\"doi\":\"10.3934/MINE.2021034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we investigate the behavior of the polar tangential angle of a general plane curve, and in particular prove its monotonicity for certain curves of monotone curvature. As an application we give (non)existence results for an obstacle problem involving free elasticae.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/MINE.2021034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/MINE.2021034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this note we investigate the behavior of the polar tangential angle of a general plane curve, and in particular prove its monotonicity for certain curves of monotone curvature. As an application we give (non)existence results for an obstacle problem involving free elasticae.