{"title":"低速数字气流传感器从3D打印PEDOT:PSS微头发结构","authors":"H. Devaraj, K. Aw, J. Travas-sejdic, R. N. Sharma","doi":"10.1109/TRANSDUCERS.2015.7181118","DOIUrl":null,"url":null,"abstract":"This paper reports a novel method for digital sensing of low-velocity air flow using high aspect-ratio 3D printed conducting polymer (PEDOT:PSS) micro-hair structures (1000 μm long, 5.5±0.5 μm diameter). By implementing multiple micro-hair structures as micro-switches that respond to air flows of particular velocities, a low-velocity digital flow sensor capable of detecting air flow in the range of 61 mm/s to 99 mm/s is demonstrated.","PeriodicalId":6465,"journal":{"name":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Low velocity digital air flow sensor from 3D printed PEDOT:PSS micro-hair structures\",\"authors\":\"H. Devaraj, K. Aw, J. Travas-sejdic, R. N. Sharma\",\"doi\":\"10.1109/TRANSDUCERS.2015.7181118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a novel method for digital sensing of low-velocity air flow using high aspect-ratio 3D printed conducting polymer (PEDOT:PSS) micro-hair structures (1000 μm long, 5.5±0.5 μm diameter). By implementing multiple micro-hair structures as micro-switches that respond to air flows of particular velocities, a low-velocity digital flow sensor capable of detecting air flow in the range of 61 mm/s to 99 mm/s is demonstrated.\",\"PeriodicalId\":6465,\"journal\":{\"name\":\"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2015.7181118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2015.7181118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low velocity digital air flow sensor from 3D printed PEDOT:PSS micro-hair structures
This paper reports a novel method for digital sensing of low-velocity air flow using high aspect-ratio 3D printed conducting polymer (PEDOT:PSS) micro-hair structures (1000 μm long, 5.5±0.5 μm diameter). By implementing multiple micro-hair structures as micro-switches that respond to air flows of particular velocities, a low-velocity digital flow sensor capable of detecting air flow in the range of 61 mm/s to 99 mm/s is demonstrated.